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Supplemental Presentations 
 
There were two supplemental, alternative view, presentations that are documented by the 
viewfoils used in presentations by Hugh Coleman and Unmeel Mehta.  The slides of these 
presentations follow the discussion below. 
 
Participants in this session are listed at the end of the Discussion Synopsis. 
 
Discussion Synopsis (to provide perspective on papers & briefings identified above). 
 
Discussion Issues   
 
There were four distinct topics covered in the discussion portion of the session: 
 

1. Definition of Verification 
2. Uncertainty Quantification  
3. Validation Metrics 
4. Predictability 



Verification Definition 
 
Do the words correctness and accuracy mean the same thing in your definition of verification?  
They are closely related, but they are not the same. We to use the word “accuracy,” because  we 
can only evaluate accuracy. Correctness implies that the code is correct. 
 

Uncertainty Quantification 
 
How do you calculate uncertainties in simulation (referring to viewfoils presented by Coleman – 
these are at the end of the discussion section)?  We do not have good ways to estimate.  Separate 
uncertainty into numerical error and model uncertainty and experimental side bias and random 
uncertainty.  Use of Richardson Extrapolation on unstructured grids is more difficult than on 
structured grids.  Thus numerical errors are difficult to quantify.  
 
Of the two ways to account for model bias uncertainty: 1) correct for statistically, or 2) via 
improved physics, which is preferred?   Eliminate bias error as much as possible via model 
improvement as much as affordable, for example, by including omitted physics.  If you are close 
to the validation database, i.e. know a lot about the problem, you can easily correct the bias error. 
Increase in risk occurs as your predictions move away from the validation database. 
 
Is there a way to correct for bias error in experiments?  For known bias errors, account for them 
and eliminate the error. For unknown bias error you can move the experiment to another facility, 
or make independent measurements of the same quantity.  For certain correlated bias errors, one 
can eliminate these using statistical methods combined with symmetry techniques. You can also 
use an analytical model of the measurement to check the bias. 
 

Validation Metrics 
 
Do you consider validation metrics associated with various system responses to be separate from 
prediction uncertainty quantification, i.e. associated with characteristics of the system? This list 
of metrics includes parametric metrics that described model parameters.  Figure 12 (Oberkampf, 
et al paper presented immediately below) shows increasing validation metric complexity.  There 
is clearly a hierarch of system response metrics that should be used.  The key point is the 
customer requirements must provide guidance to the modeler as to that metrics are importance 
and what level of accuracy is required.  Can historical data uncertainty quantification metrics be 
propagated through a new model and thus help lend confidence to the model predictions?   This 
can be done provided the model and prediction spaces are close. 



 

Predictability  
 
How do you quantify uncertainty in model predictions?  Can only quantify the error in the model 
space, but currently there is no good way to project what the error will be in the predictions 
space.  The extrapolation to the predictions space is mostly one of extrapolating the physics, but 
this must be done using statistical techniques.  Another approach is to use Alternative  Plausible 
models of the physical Processes – i.e. multiple models to make the predictions, where each 
model has a different physics basis.  The hope is that if these models provide similar predictions 
there is some confidence the prediction is correct, but of course all the models could have the 
same flaw of lack of correct physics needed to make the sought after prediction.  In ship model 
example, Coleman presented, there is a rich history of extrapolating from small tank models to 
full-size ships, so confidence in predictions is increased.  This is similar to Bayesian updating 
where the small tank results are your prior data.  This is also a case where the prediction space is 
close to the model space. 
 
Confidence in the prediction is a function of the confidence demonstrated in the complete 
system, as well as subsystem models.  This is particularly important when the complete system 
cannot be experimentally tested. 
 
Can sensitivity analysis be used to guide confidence in predictions?  Yes, sensitivity analysis is 
useful in adding to prediction confidence to prioritize the many parameters in a model. 
 
Referring to validation metric Figure 12 (shown above), is the lower right (most complex) 
validation metric an indication of confidence in the prediction?  No. These validation metrics 



apply only to the validation tests and their associated models. But as has been mentioned  before, 
the issue of predictive capability is related to the “closeness” relationship of the validation 
domain to the  prediction space. 
 
Coleman presentation (4 slides): 

Schematic of Verification and Validation of a Simulation
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Ship Wave Profile Validation

suppose Ureqd = 0.2?  = 2.0?
 

Coleman-Stern Comparison
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Mehta presentation (12 Slides): 

�

Verification

The process of assessing the credibility 
of a computational model

• by determining whether the conceptual 
model is solved correctly and 

• by estimating the level of computational 
accuracy 

from the perspective of the intended uses 
of the simulations.

 
�

Validation

The process of assessing the credibility of 
the simulation model (within its domain of 
applicability)

• by determining whether the right simulation 
model is developed and

• by estimating the degree to which this model 
is an accurate representation of reality 

from the perspective of its intended uses.

 
 



�

DMSO’s Definitions for V&VDMSO’s Definitions for V&V

• Definitions are developed principally for operations 
research problems.

• Philosophy
• Verification deals with the implementation (code/system).
• Validation deals with the representations embedded for 

simulation.
• Practice

• Verification checks “Did I build the code right?” given the 
specification.

• Validation checks for the credibility of simulation in terms 
of numerical accuracy and phenomenological accuracy 
for the intended use.

 

�

““What we observe is not nature What we observe is not nature 
itself, but nature exposed to our itself, but nature exposed to our 

method of questioning.” method of questioning.” 

—— Werner KarlWerner Karl HeisenbergHeisenberg

 
 



�

Error and Uncertainty in 
Mathematics

Error and Uncertainty in 
Mathematics

• Error: “The difference between a computed or 
measured value and a true or theoretically correct 
value.” (The American Heritage Dictionary of the English Language, 

3rd Ed., 1992.)
• Uncertainty: “The estimated amount or percentage 

by which an observed or calculated value may differ 
from the true value.” (The American Heritage Dictionary of the 

English Language, 3rd Ed., 1992.)
• “Uncertainty may range from a falling short of 

certainty to almost complete lack of definite 
knowledge especially about an outcome or result.” 
(Webster’s Ninth New Collegiate Dictionary, 1990.)  

 

�
Uncertainty ExistUncertainty Exist

• We do not have sufficient understanding of nature.
• We do not have sufficient computational 

capability.
• We cannot measure initial conditions with 

sufficient accuracy.
• Models and simulations are inherently uncertain.

 
 



�

Simulation Paradigm
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�
Simulation Model 

Computational model:
Discretization, procedures,
artificial phenomena, etc.
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�

Credibility Assessment 
Flowchart
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�
Principal Verification & 
Validation Approaches

Simulation
Model Verification Validation
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�

• What matters is uncertainty (precision and bias), 
not veracity or validity, because the best measure 
of  numerical or physical accuracy is uncertainty. 

• The sensitivity-uncertainty analysis is the key for 
achieving credible simulated virtual reality. 

• The management of uncertainty is a critical and 
principal activity for fully achieving the promise 
of modeling and simulation technology.

Observations 

 
 

�
Uncertainty EvaluationUncertainty Evaluation

• Type A uncertainty evaluation is done by 
the statistical analysis of a series of 
simulations.

• Type B uncertainty evaluation is conducted 
by means other than the statistical analysis 
of a series of simulations.

• Systematic (or random) uncertainty may be 
obtained by either a Type A or Type B 
evaluation.
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