
© 2002 by Luminary Software

Validation & Verification Implications
for Modeling and Simulation Reuse

John D. McGregor
Luminary Software
Clemson University

© 2002 by Luminary Software 2 John D. McGregor

Goal

Achieve significant, strategic reuse
in both product and test assets from
concept definition to deployment

© 2002 by Luminary Software 3 John D. McGregor

Focus

Two possible targets:

Model – is it correct?

Program – is it accurate?

To reuse an M&S system we must have
confidence in the system, which we can
only have (practically) through V&V.

© 2002 by Luminary Software 4 John D. McGregor

Reuse *!%@*

Many professionals don’t take reuse
“schemes” seriously anymore

Schemes are initiated by people without
sufficient breadth of responsibility

Schemes are initiated by people without
sufficient depth of control

© 2002 by Luminary Software 5 John D. McGregor

Test assets

Test plans
Test cases
Test reports

Used repeatedly on same system

Used repeatedly across multiple systems

© 2002 by Luminary Software 6 John D. McGregor

Reuse in same version of a
product

 Test asset Product asset A
iteration 1 version 0

Product asset A
iteration 2 version 0

Product asset A
iteration 3 version 0

Same functionality, correcting defects
Functionality developed iteratively

© 2002 by Luminary Software 7 John D. McGregor

Reuse across versions

Test asset Product asset A
iteration 1 version 0

Product asset A
iteration 2 version 0

Product asset A
iteration 3 version 0

Test asset Product asset A
iteration 1 version 1

Product asset A
iteration 2 version 1

Product asset A
iteration 3 version 1

<<possibly edited>>

Functionality
developed
incrementally

© 2002 by Luminary Software 8 John D. McGregor

Reuse across products

 Test asset Product asset A

Product asset D Product asset CProduct asset B

<<derived from>> <<applied to>>

Functionality is a combination of features.
Each feature appears in multiple systems.

© 2002 by Luminary Software 9 John D. McGregor

Definitional reuse

 General
Definition

A

Specialized Version
of General
Definition

C

Specialized Version
of General
Definition

B

© 2002 by Luminary Software 10 John D. McGregor

Assumptions - 1
•The greatest impact of “multiple use” of
assets comes at the definition level rather
than the operation level.

•Traceability between product assets and
test assets facilitate the management of
changes to assets.

•The software assets being produced capture
and use domain expertise that is important to
the success of the organization.

© 2002 by Luminary Software 11 John D. McGregor

Assumptions - 2
•The V & V activities include static
techniques such as inspections and reviews
as well as dynamic tests.

•The various verification and validation
activities form a process that is independent
of, but intertwined with, the product
development process.

•The later in the product creation process
that V & V begins, the less effective it will be

© 2002 by Luminary Software 12 John D. McGregor

Principles - 1
•An asset is only usable within a certain context.

•Test assets are more likely to be used for
multiple systems if the product assets they are
used to test are used in those same systems.

•Designing tests to have the same structure as
the portion of the system to be tested produces
test assets with the least amount of effort
possible and maintains close traceability.

© 2002 by Luminary Software 13 John D. McGregor

Parallel Architecture for
Component Testing

General
Definition

A

Specialized Version C
of General Definition A

Specialized Version B
of General Definition A

Test Class for General
Definition

A

Test Class for
Specialized Version C

of General Definition A

Test Class for
Specialized Version B

of General Definition A

<<is applied to>>

© 2002 by Luminary Software 14 John D. McGregor

Principles - 2
•The concept of an interface as a specification
separate from implementations of that interface
supports the use of the specification information
across multiple implementations.

•Abstraction, encapsulation and information
hiding are standard devices for supporting
multiple in software design.

© 2002 by Luminary Software 15 John D. McGregor

Software Product Lines
A software product line is a strategy for planning and
producing multiple products that share a related set of
features

A software product line organization adopts a
comprehensive set of practices that span the areas of
organizational management, technical management, and
software engineering.

These practices include review, inspection, and testing
practices that emphasize the use of assets across the
products in the product line.

© 2002 by Luminary Software 16 John D. McGregor

Product Line Results
Raytheon experienced 10 fold improvement in quality, 7
fold improvement in productivity

Cummins, Inc. experienced the time to build typical
system reduced from 1 year to 1 week

© 2002 by Luminary Software 17 John D. McGregor

Commonality and Variability
Analysis
Determine the elements in common across products

Determine the allowed variabilities across products

This should be done during system creation but they may
be conducted after the fact to aid in test creation.

© 2002 by Luminary Software 18 John D. McGregor

Software architecture
•The software architecture of a program or computing
system is the structure or structures of the system, which
comprise software components, the externally visible
properties of these components, and the relationships
among them

•The Architecture Trade-off Analysis Method is an
architecture evaluation method that utilizes a set of
generic techniques that are used to specialize a set of
general constructs into the specific questions to be used
for evaluation

•Use cases are the source of scenarios that drive ATAM

© 2002 by Luminary Software 19 John D. McGregor

Test assets in a product line
•· test plans and processes,

•· architecture evaluation scenarios,

•· standard component interface test assets,

- system level test assets

- Each asset created in a product line context is
guaranteed to be used in several products in the
product line by virtue of the planning, scoping, and
architecture processes.

© 2002 by Luminary Software 20 John D. McGregor

Proactive reuse is more profitable
than reactive reuse
•comprehensive planning process

•domain analysis

•use of test assets follows the use of the corresponding
product assets

© 2002 by Luminary Software 21 John D. McGregor

Component test packages
encapsulates a product component with:

•A specification,

•A test plan for the component,

•Test cases,

•Test data sets

•Previous test reports

© 2002 by Luminary Software 22 John D. McGregor

System test packages
groups together:

•a family of use cases,

•the test plan for that set of requirements,

•inspection scenarios involving those use cases,

•the functional tests for that aspect of the system, and

•test data sets

© 2002 by Luminary Software 23 John D. McGregor

Design and test patterns
•Design pattern captures a canonical solution to a design
problem

•Test patterns capture how to test software designed using
a specific design pattern

© 2002 by Luminary Software 24 John D. McGregor

Content of Test Pattern
•Problem - Description of pattern to be tested

•Context - Special testing conditions

•Forces - What types of faults are we looking for?

•Solution - Test case selection strategy that tests the
interactions among the components that implement the
pattern

© 2002 by Luminary Software 25 John D. McGregor

Problem - Distributed Callbacks
The synchronous communication between two objects is
modified to be asynchronous by adding a callback object

ClientClient ClientClient

ServerServer ServerServer

CallbackCallback

© 2002 by Luminary Software 26 John D. McGregor

Testing Distributed Callbacks

Context
• An intermediate object forwards messages

Forces
• Possible to intermingle successive messages/responses

Solution
• Build test cases that submit a second message prior to

receiving the response from the first message
• Construct multiple clients, submit multiple requests

through multiple callback objects

© 2002 by Luminary Software 27 John D. McGregor

Thanks

Contact me at:
• johnmc@lumsoft.com

	CD Title Page
	CD Table of Contents
	Acronym List
	Acrobat Help
	Validation & Verification Implications for Modeling and Simulation Reuse
	Goal
	Focus
	Reuse *!%@*
	Test assets
	Reuse in same version of a product
	Reuse across versions
	Reuse across products
	Definitional reuse
	Assumptions - 1
	Assumptions - 2
	Principles - 1
	Parallel Architecture for Component Testing
	Principles - 2
	Software Product Lines
	Product Line Results
	Commonality and Variability Analysis
	Software architecture
	Test assets in a product line
	Proactive reuse is more profitable than reactive reuse
	Component test packages
	System test packages
	Design and test patterns
	Content of Test Pattern
	Problem - Distributed Callbacks
	Testing Distributed Callbacks
	Thanks

