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Unit to System

» Suites of validation experiments are often performed at the
unit (component) level whereas we are interested in
applying a model at the system level.
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Definitions

» Target Application (System)
— Anticipated application of the model
— Can be different from the validation experiments

* Decision Variables
— Important predictions of target application model
— Can be different from the validation experiment measurement
variables
» Reconstructed Decision Variables

— Weighted combination of the validation experimental
measurements to approximate the sensitivity of the decision
variables to the important parameters
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Uncertainties Modeled

System Application Unit Experiments
o5
<) L drS,
=~ =~
A~ =™
. 1 reconstructed d
12
* Model parameter uncertainty for validation (component level)
experiment
» Measurement uncertainty at unit level
* Model parameter uncertainty for target application %0
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College of Engineering FAER\ T

New Mexico State University Slide 4 aLa



Questions

 How do we combine data at the unit level to represent the
target application at the system level?

* How do we evaluate whether the combined data can
resolve the system level model with sufficient accuracy?

« How do we define validation metrics that represent the
system level?
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Our Approach

« Some measurements are more important than others!
* Some model parameters (represent physics) are more important than
others!

«  We will weight the measurements at the unit level so that they best
represent the sensitivities of the system level predictions (decision
variables) to these important parameters.

» Practical to perform first order uncertainty analysis of
— systems level application
— each of the unit level validation experiments

» The results are valid only to first order (can be extended to higher
order)
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Theory

Application (system level): Validation Experiments (unit level):
g ) y=F(x.a,)
where
where

d — vector of decision variables — note

that these are not necessarily the v — vector of predicted measurements for

same as those quantities measured the suite of unit level experiments
at the unit level F — model for validation experiments

G — model for target application x — important model parameters
decision variables o, — perturbations from expected values

X — important model parameters representing uncertainty in important

o, — perturbations from expected model parameters for the validation
values representing uncertainty in experiments
important model parameters for the
system
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First Order Uncertainty Analysis

Validation Experiments (unit):
Ay =V_F(x,a,) Ax + V , F(x,a,) Aa,

Application (system):
Ad =V_G(x,a,) Ax + V_, G(x,a,) Ao,

We weight the suite of measurement perturbations to best represent
the sensitivities at the application level.

AT Ay=Ad
SO
ATV _F(x,a,) Ax + ATV__F(x,a,) Aa, =V, G(x,a,) Ax
+ V.. G(x,a,) Ao,
‘&@uco\?
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Uncertainty Analysis, continued

For the present application, we define a, and a, such that their expected
values are zero. Taking the expected value of the previous equation leads
to

(Vi F(x,a))" A =(V,G(x,0,))"

This equation relates sensitivities at the unit level to sensitivities at the
system level. Solve for the weighting matrix A.

Case 1: The columns of (V, F(x,a,))! do not span the columns of
(V,G(x,0,))"

No solution — there 1s no combination of the experimental data
sensitivities that can represent the target application - the validation
experiments do not span or “cover” the target application
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Uncertainty Analysis, continued 2

Case 2: (V, F(x,a,))! is square and full rank and thus spans (V, G(x,a,)) *

A=((ViFx,a,))! (V,G(x,a,)) !

Case 3: (V, F(x,a,))! spans (V, G(x,0,)) !, but we have more
measurements than model parameters. We choose that solution which
minimizes the sensitivity of the weighted combination of data to the
measurement uncertainty (use Lagrange multipliers):

min L = min [ AT cov(F-y) A + AT ((V, F(x,a.,)) T A - (V, G(x,0.,))"]
which gives

A= (cov(F-y))" (V, F(x,a,))
[(V F(x,a,))" (cov(F-p)) (V, F(x,a )] (V, G(x,a,))"
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Uncertainty Analysis, continued 3

Cases 2 and 3:

Once we know the weights A, we can evaluate the covariance matrix
for the reconstructed decision variable. Our reconstructed decision
variable is

Ad=ATAy-ATV_ F(x,a,) Aa,+ V,, G(x,a,) Aa,

and

cov(d) = Al cov(y) A+ ATV _ F(x,a,) cov(a,) (AT V , F(x,a,))!
+V,.G(x,a,) cov(a,) (V,, G(x,a,))!
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Example 1: One validation experiment
with 2 measurements (steady state)

Experiment Application

1 1

\ 4

Important model parameters: T, T,
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Example 1: One validation experiment
with 2 measurements

Experiment:

Model
d*T/dx2=0
TO0)=T,=a,
T(H)=T, =a,

Measurements
v, = T(0.25)

v, = T(0.75)

Application:

Model
d?T/dx2=0
TO0)=T,=a,
T1)=T,=q,
Decision Variable
d = -k dT(1)/dx
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Example 1, continued

0.75 0.25]
025 075/

0.75 0.25 k
=
0.25 0.75 -k

ok _

(V. F(x,0,)) { (V.G(x,a,)) = ka}

e Columns of matrix span the RHS — validation experiments resolve
target application decision variable

« Weighted measurements give the finite difference approximation to the
decision variable!
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Corresponding Decision Variable
Uncertainty

cov(Ad) =a' cov(Ay)a
If cov(Ay)=0_°I; cov(Ad)=8c "k’

* [s this uncertainty acceptable for the application?

 If not, then validation experiments do not resolve the
application!

(assume independent measurements with uniform variance)
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Example 2: Two Validation Experiments

Experiment 1 Experiment 2

1 1

«

e 7 A

A 4

»
»

Application
4] b5 13 1 "
T, T, 0 T,
Uniform /_\/

internal
generation q

/\_/ /\/ N 1 T il

\
Tl
Uniform
}—' X }—’ X it T ke dTax

generation q

/\/
Important model parameters: T, T;, q

gXiCo

< ®
. . z
College of Engineering CA

. Ay
New Mexico State University Slide 16 aLa

19>




Example 2: Two Validation Experiments

Experiment and Model 1: Application Model:
d?T/dx?=0 PT/dx2 = q =,
T(0) =T, =0, dT(0)/dx =0
T() =T, =a, T(1) =T, =a,

Measurements Decision Variable
Y1 = T(0.25) d = -k dT(1)/dx
v, = T(0.75)

Experiment and Model 2:
d?’T/dx?>=q=a,
TO)=T,= o,

Ly =T =05

Measurement
;= T(x,)
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Example 2, continued

Experiment 1: Measurements at x=0.25, 0.75

0.75 0.25
(V F(x,a,)) =[0.25 0.75
0 0

Experiment 2: Measurement at x=x

(V. F(x,a,)) =| x

Experiments 1 and 2:

0.75 025 1-x,
(V. F(x,a,)) =| 025 0.75 x

O O N N

Application:

(V.G(x,a,)) =
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Do experiments span (represent) the
application?

Experiment 1: Measurements at (.25, 0.75

0.75750,25 0 A
025 0.75la=| 0 Does not's'pe?n the application
0 0 " - no sensitivity to q

Experiment 1 and Experiment 2 with measurement at x=0

0275 O 2otasd 0 K24
025 075 0la=| 0 Does not's'pe?n the application
- NO sensitivity to q
0 0O O -

Experiment 1 and Experiment 2 with measurement at x=0.5

0.75 0.25 0.5 0
025 075 05 la=| 0 Does span the application
0 0 =0.125 -k
exiCo
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Coefticients

Experiment 1 and Experiment 2 with Exp. 2 measurement at x=0.5

R s B s o)
o, =6_~a la=960_"k ouch!

(assume independent measurements with uniform variance)
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Example 3: Transient Heat Conduction
with 2 Measurements

Experiment Application

1 1

\ 4
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Example 3: Transient Heat Conduction

Experiment:

oT o°T
=
ot Ox>

1(x,0)=0
1(0,0) = T,
L) =T,

7/1 — T(Ozsatj)a ]:1,1’1
7/2 = T(075,ZL]), jzl,l’l
Parameters

Important: 7, T,
Uncertain; «

Application:

ok o°T
— == a
ot Ox>

T(x,0)=0
1(0,0) = T,
I(1,0) =T,

d = -k 6T(1,1)/ox

Important: 7, T, «
Uncertain: 7\, T},
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Parameter Uncertainty

Parameter Mean Value Standard Deviation

Validation Experiment

o} 1.0 0.05
Y 0.25
Application
T, 10.0 2.0
o 20.0 2.0
k 1.0 0.1
0} 1.0 0.1
‘&@uco\?
W\
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Distribution of Uncertainty in Decision

1.5

Variable

Time cyd-meas cSd-v cSd-a cSd i

s 4 *
0.125 0949 1.106 484  5.06 .
Do 0,570 8N 0ER T Al 38 57 st &
03555 0BSEAA0P69. IR0 N AT SN R s
0.500 0329 0.104 302 304 S .
0625 0320 0038 301 302 E |
0750 0318 0.013  3.00 3.02 F
0.875 0318 0.004  3.00  3.02 5 oToed |
1.000 0318 0001  3.00  3.02 - Trea
10.00 0318 0.000 3.00  3.02 0 |

0.5 1

Time

Given 6,4, we can define a validation metric (see paper)
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Discussion

While this approach is first order — it does provide significant insight.

« Tells us how to weight the measurements to best represent the
sensitivity of the application decision variables to the important model
parameters.

« Provides methodology to test whether a suite of validation experiments
spans the application to first order (experimental design!)

« Provides an estimate of the uncertainty of the reconstructed decision
variables given the uncertainty in the validation variables and
measurements. Should be small compared to the acceptable level of
uncertainty in the decision variable (experimental design)!

e Can be used to define a validation metric (see paper) if we can develop
an adequate model for the PDFs of the differences between
measurements and predictions
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Four Most Important Ideas

1. We should test models based on an anticipated target
application

2. We should not do model validation in a vacuum — models
should be used to design validation experiments
— Models for the validation experiments
— Models for the application

3. Effect of uncertainty must be considered in this design

First order sensitivity analysis provides a first order
approach to the above.
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