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Common Examples of
Multi-Resolution Thinking

• Back-of-the-envelope calculation to check a more 
detailed computation
– Estimate aircraft cost by component (e.g., engine, 

airframe, avionics, etc.); check against historical cost 
per pound

• Stories to explain model behavior
– Used to debug model or data

• Simple displays for presenting, explaining, and 
generalizing results to the client
– Model shows the analyst a few trees; analyst shows the 

client the forest
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Show Client a Simple Display, Generalize 
From High-Resolution Results

Goodness of 
Outcome

Very 
Good

Effective Size 
of Threat

Weapon System A

Weapon System C

Weapon System B

Range of credible threats

1 2 3 4

Good

Fair

Scenarios
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Multi-Resolution Modeling to Link 
Levels of Analysis

Level
Strategic

Operational

Tactical

Entity

Data

MRM is building families of mutually consistent models
at different levels of resolution

• Design family together
(integrate from start)

• Use all relevant info.

• Seek mutual calibration
• Construct “good seams”
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Exploratory Analysis,
Massive Uncertainty, and Validation

• Many problems we work on have massive uncertainty, e.g.,
– Technology and threats will change between now and 2030
– We can’t build predictive models

• Use an exploratory analysis strategy
– Look for robust and adaptive policies
– Requires:

• Agile models (few variables)
• Unbridled use of extrapolation

• When is model & data for exploratory analysis “valid”?
– Tentative suggestion:

• Model is structurally correct
• Domain for analysis includes all cases of interest

– What practical tests can we apply?
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Outline

• Example of working at multiple levels of 
resolution

• Consistency and validation
• Motivated metamodels, or the importance of a 

good story
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An Example Use of MRM:
Comparing Weapon Systems

Given a specified amount of funding, should we 
buy weapon system A or B or C?

To support a recommendation to buy system B, 
the analyst argues:
1. Scenarios 1, 2, 3, and 4 constitute an adequate test
2. System B is more combat effective than A or C in 

scenarios 1, 2, 3, and 4
3. System B has adequate non-combat performance 

(addressed in the paper, but not in this presentation)
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Recommended SecDef Operational 
Challenges

• Early halt of classic armored invasion given depth
(e.g., in Kuwait or Northern Saudi Arabia)

• Early shallow-halt of fast parallel-operation invasion 
without depth (e.g., Korea) and with multifaceted 
opponent

• Early offensive actions without first building massive 
force

• Effective low-risk early intervention in “next Bosnia”
• Effective low-risk peacemaking in urban 

environments
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Select Challenges Based on Analytic 
Importance

• Categorize challenges in three dimensions
– Likelihood (low - high)
– Consequence (small - great)
– Difficulty (easy - hard)

• Choose hard challenges-but not too hard
• Balance likelihood versus consequence

Likelihood
High

Low
Small                       Great

Pick challenges
here

Ignore
challenges here

Consequence
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Decompose Challenges Hierarchically
Early Halt

Quick, 
effective 
theater C3

and TMD 

Quick
securing 
of bases, 
SLOCs...

Rapid
deployment

Quick employ-
ment to delay and 
kill armor

Highly lethal
early forces

Quick 
SEAD

Modest
logistics
requirement
from CONUS

Rapid
employment
doctrine

Small,
lethal
forces

Layered
defenses
early

Land and 
sea 
options for
JTF Cmdr

Forced
entry

Early
counterforce

Early RSTA

Reduced 
dependence on
ports, fields

Cross-cutting:
• Network-centric C3, RSTA
• Long-range fires
• Effective ops with allies
• Presence and forward-lean

at warning
• Intra-theater mobility

Mine 
clearing
,…

Long-
range
fires

Ground-
Maneuver
forces
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EXHALT-CF:
Use Long-Range Fires to Halt an Armored Column

Dhalt

∆Droll Ω

A0 Tx                   δ*(dep)        δ*(le) δb Nawpns          ξ

T(dep) T(le)

Tdelay
V

Hlocal
AFV spacing
Axes
Cols/Axis

A(t) RSD(dep)     RSD(le)

D(dep) D(le)

δ(dep,area)   δ(le,area)
δ(dep,pt) δ(le,pt)

Penetration
distances Time before Red

starts moving

Vehicles
to kill

Kills per
shooter-day

Engaged
shooters

Halt
times

Red velocity

Time
before
Blue
starts
shooting

Obj

R
Amax
Losses

A00 W    Rpre(t) F(t) Ndiv   VPD   H
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Input Combinations that Kill 500 
Armored Vehicles Within 100 km
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Input Combinations the Kill 4000 
Armored Vehicles Within 300 km
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An Example Use of MRM:
Comparing Weapon Systems

Given a specified amount of funding, should we 
buy weapon system A or B or C?

To support a recommendation to buy system B, 
the analyst argues:
1. Scenarios 1, 2, 3, and 4 constitute an adequate test
2. System B is more combat effective than A or C in 

scenarios 1, 2, 3, and 4
3. System B has adequate non-combat performance 

(addressed in the paper, but not in this presentation)



RAND 15

RAND’s Force-On-Force Modeling Suite Provides 
A Unique Capability for High Fidelity Analysis

Information Dominance

Aircraft/Air Defense
Interactions

SEMINT
Distributed Model interface

RJARS
– BLUE MAX  II
– CHAMP

CAGIS
– DTED
– DFAD

RTAM
– NVEOD

Model

Maneuver & Firepower
Force Protection

Acoustic
Sensors

Enhanced Target
Acquisition

ASP

Digital Terrain
Representation

C3

Model

Smart Munitions

Force-on force
Combat Simulation

JANUS
– MADAM

Active
Protection
System
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Use of JANUS Suite for
Long Range Precision Fires

• JANUS simulates movement of each Red vehicle 
across the terrain (scripted)

• Periodic snapshots of Red vehicle positions are 
provided to a man-in-the-loop[1]
– 5 minute intervals
– See a vehicle with probability PTREE, POPEN

• Man-in-the-loop[1] selects aim points, impact 
times for long range fires
– Aim only at open areas
– TIMPACT > TSNAPSHOT + ∆TDELAY

• MADAM simulates kills of Red vehicles
– Monte Carlo, run 20 trials to obtain “stable” estimates

[1] For some weapons, the function of the man-in-the-loop has been automated.
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Effectiveness of ATACMS/BAT Can 
Vary by an Order of Magnitude

1996 DSB Summer Study
• 3 kills per ATACMS/BAT

1998 DSB Summer Study
• 0.35 kills per ATACMS/BAT
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Explanations and Plausible 
Counterarguments

1996 DSB Summer Study
• 3 kills per ATACMS/BAT

• No foliage

• 458 of 504 Red vehicles 
were AFVs

• 50+ AFVs/packet, 50-100m 
separation between AFVs

1998 DSB Summer Study
• 0.35 kills per ATACMS/BAT

• Tree cover

• 104 of 543 Red vehicles 
were AFVs

• 3-10 AFVs/pkt, 150-600m 
separation between AFVs

ATACMS/BAT has a huge footprint

SO, IS IT THE MODEL, OR IS IT THE WEAPON???

Man-in-the-loop aimed only at clearings

BAT submunitions only “hear” combat vehicles



RAND 19

Kills per Salvo Versus
Vulnerable AFVs in Footprint
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Against Sparse Red Formations, Can’t Time 
Shots Well Enough to Target Specific Packets

Numbers of vulnerable AFVs in a typical footprint, DSB ‘98
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Precise Timing Unnecessary Against Large, 
Dense Red Formations
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Estimating Number of Vulnerable AFVs
in  the Footprint

Aim 
point

Last target update (if any)  
(time = -Time_of_last_update + TOA_error)

Footprint length, F, at impact

Packet of AFVs and other
vehicles

Killing zone

Weapons commit to individual targets
(time = -Descent_time + TOA_error)

Wooded 
terrain

Impact point
(time = TOA_error)

Wooded 
terrain
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Most Footprints Contain Few Targets
Comparing Data from DSB ’98 with PEM estimates
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PGM Effectiveness Model (PEM)

• Low-resolution model
• Scales effectiveness of long range precision fires 

for influence of multiple factors
– Weapon characteristics
– Impact time error 
– Terrain
– Density of Red formation

• Uses of PEM
– Exploratory analysis
– Subroutine to incorporate above factors in other models
– Establish face validity of high-resolution model
– Generalize high-resolution results
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Outline

• Example of working at multiple levels of 
resolution

• Consistency and validation
• Motivated metamodels, or the importance of a 

good story
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The Usual Definition of Consistency 
Between High- and Low-Resolution Models

High-resolution
outputs

High resolution
model

( )xhrHRyhr =

High-resolution
inputs

Start

xhr

Aggregation function

Aggregated
high-resolution outputs

( )yhrAggOutyagg =

Aggregation
function

Low-resolution outputs
Low resolution

model ( ) yaggxlrLR ≅

Low-resolution inputs

( )xhrAggInxlr =
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A More General Definition of Consistency 
Between High- and Low-Resolution Models

Ensemble of
high-resolution inputs

Ensemble of
high-resolution outputs

High resolution
model

( ) { }U

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
∈

==
xlrExhr

out
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xlrEyhr

agg

out

yhrAggOutyaggyaggxlrE
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Low-resolution outputs
Low resolution
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Start xlr



RAND 28

Validity is Consistency Between
a Model and the Real World

Ensemble of real-world observations

( ) ( ){ }xlrvrealAggInvrealxlrEobs ==

Aggregation function

Ensemble of aggregated
real-world observations

( ) ( ){ }
( )

U
xlrEvreal

agg

obs

vrealAggOutyaggyaggxlrE
∈

==

Disaggregation
function

Model outputs

Model ( ) ( )( )xlrEutesWhatAttribxlrLR agg≅

Model inputs

Start xlr
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What Attributes of Eagg(xlr) Should the 
Low-Resolution Model Estimate?

• Assume yagg is a scalar
• If the high-resolution model is well-behaved, then

Eagg(xlr) is an interval
– If it is a small interval, estimate the midpoint
– If you intend to use an a fortiori argument, estimate the 

MAX or MIN
– Otherwise, you must estimate something else

• Range (MAX and MIN)
• Confidence interval
• Mean and standard deviation

• If the high-resolution model is ill-behaved, e.g., 
chaotic, then Eagg(xlr) need not be an interval 

Require a probability
distribution on xhr
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Kills per Salvo Versus
Vulnerable AFVs in Footprint
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Sources of Variation in Kills per Shot 
for Fixed # Vulnerable AFVs

• Random variation
– JANUS suite has Monte Carlo elements

• Hidden variables – phenomena in the high-
resolution model that aren’t retained in PEM
– Kinds of AFVs (tank, BMP, …)
– Pattern (linear, “cross”, …)
– Interference (e.g., noise from vehicles not in footprint)
– ???
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Possible Bias from Using Average Kills 
per Salvo from This Sample

• Manipulation of hidden variables by Blue or Red
– e.g., Red noisemakers as decoys

• Quantities that were held constant in the high-
resolution cases we had, but could be varied in 
future cases

These issues make experimental design
problematic. 
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Outline

• Example of working at multiple levels of 
resolution

• Consistency and validation
• Motivated metamodels, or the importance of a 

good story
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Why a Good Story is Important
(or why a model shouldn’t be merely a black box)

• Establish face validity
• Present, explain, and generalize results to client
• Extrapolate results
• Build a better metamodel
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Extreme Approaches to Building a 
Metamodel

• Statistical
– Build a data set of many cases from object model
– Use statistical methods (e.g., regression) to analyze data
– Disregard knowledge of the model’s “innards”

• Phenomenological
– Start with the most exact theory available
– Simplify by aggregating, rearranging, combining terms
– Use physical insights (e.g., conservation laws)
– Disregard data generated by the object model

This experiment explored how to constructively 
combine the two approaches
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Desiderata for a Good Metamodel

• Goodness of fit
• A plausible storyline connecting outcome to inputs

– For cognitive purposes
– To support extrapolation

• Parsimony
– To permit exploratory analysis

• Identification of “critical components”
– Sets of variables all of which must work to make the system as 

a whole perform adequately
– Enter the metamodel as nonlinearities, e.g.,

• Products
• Thresholds
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Illustration of Critical Components
(using a “Halt Phase” example)

D = Distance at which Red column is halted (Outcome)
A = Number of Blue shooters
δ = Number of Red vehicles killed per shooter-day
T = Time Blue starts shooting
ξ = Number of Red vehicles to kill
V = Velocity of Red column

In a linear model, tradeoffs are fixed, universal

D = a0+a1A+a2 δ+a3T+a4 ξ+a5V

But not in a model based on (nonlinear) phenomenology  







 +×=

δ
ξ

A
TVD
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EXHALT-CF:
Use Long-Range Fires to Halt an Armored Column

Dhalt Obj

∆Droll Ω

A0 Tx δ*(dep)        δ*(le)       δb Nawpns ξ

T(dep)                T(le)

Tdelay
V

Hlocal
AFV spacing
Axes
Cols/Axis

A(t) RSD(dep)     RSD(le)

D(dep)                D(le)

R
Amax
Losses

δ(dep,area)   δ(le,area)
δ(dep,pt)       δ(le,pt)A00 W    Rpre(t)          F(t) Ndiv VPD   H
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Metamodel 1: Regress Dhalt on Lowest 
Level Inputs

Dhalt Obj

∆Droll Ω

A0 Tx δ*(dep)        δ*(le) δb Nawpns ξ

T(dep)                T(le)

Tdelay
V

Hlocal
AFV spacing
Axes
Cols/Axis

A(t) RSD(dep)     RSD(le)

D(dep)                D(le)

Black BoxR
Amax
Losses

δ(dep,area)   δ(le,area)
δ(dep,pt)       δ(le,pt)A00 W    Rpre(t)          F(t) Ndiv VPD   H
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Scorecard for Metamodel 1

NoStoryline
140RMSE (km)

NoCrit Comps
14# Aggreg Vars
15# Calib Const

Model 1

Fit linear (in undetermined coefficients) model L to cases where:

0<Dhalt<Obj

Calculate metamodel M as:

M = Max{ 0, Min{ L, Obj }}
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Metamodel #2: Regress Dhalt on 
Intermediate Variables

Dhalt Obj

∆Droll Ω

A0 Tx δ*(dep)        δ*(le)       δb Nawpns ξ

T(dep)                T(le)

Tdelay
V

Hlocal
AFV spacing
Axes
Cols/Axis

A(t) RSD(dep)     RSD(le)

D(dep)                D(le)

Black Box

R
Amax
Losses

δ(dep,area)   δ(le,area)
δ(dep,pt)       δ(le,pt)A00 W    Rpre(t)          F(t) Ndiv VPD   H
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Scorecard for Metamodels 1 & 2

FragmentsNoStoryline
84140RMSE (km)

NoNoCrit Comps
1014# Aggreg Vars
1115# Calib Const

Model 2Model 1

Fit linear model L to cases where:

0<Dhalt<Obj

Calculate metamodel M as:

M = Max{ 0, Min{ L, Obj }}
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Metamodel 3 & 4: Derive Form from a 
Story, Calibrate with Statistics

Dhalt Obj

∆Droll Ω

A0 Tx δ*(dep)        δ*(le)       δb Nawpns ξ

T(dep)                T(le)

Tdelay
V

Hlocal
AFV spacing
Axes
Cols/Axis

A(t) RSD(dep)     RSD(le)

D(dep)                D(le)Box is no
longer
black

R
Amax
Losses

δ(dep,area)   δ(le,area)
δ(dep,pt)       δ(le,pt)A00 W    Rpre(t)          F(t) Ndiv VPD   H
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The Storyline for
Metamodels 3 and 4

Blue chooses the strategy with the smaller halt distance:

Dhalt = Max{0, Min{ D(dep), D(le), Obj }}

Against “In Depth” strategy, Red has constant velocity
once he starts:

D(dep)=V×(T(dep) - Tdelay)

“Leading Edge” strategy rolls Red back:

D(le)=V×(T(le) - Tdelay) - ∆Droll
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Estimating Halt Times for Metamodel 3

T(dep) and T(le) should satisfy

( ) ( ) ( ) ( )leRSDTxT(le) A  ,depRSDTxT(dep)A =−×=−×

(Average number of shooters multiplied by time spent
shooting equals shooter-days required to halt Red.)

Use some convenient approximation to A
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The Form of Metamodel 3

Use regression to determine coefficients in:

A
depRSDVcVTxcVTdelayccdepD )()( 3210 ++−=

Drollc
A

RSD(le)VcVTxcVTdelayccD(le) 87654 ∆−++−=

Note “critical component.”  To halt a fast Red (large V)
in a short distance (small D), Blue must:

- Reduce Tx (response time); and
- Decrease RSD (e.g., better weapons); and
- Increase     (number of shooters)A
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Scorecard for Metamodels 1-3

YesFragmentsNoStoryline
3084140RMSE (km)

YesNoNoCrit Comps
51014# Aggreg Vars
91115# Calib Coeffs

Model 3Model 2Model 1

Fit linear models L(dep) and L(le) to cases where:

0<D(dep)<Obj, 0<D(le)<Obj

Calculate metamodel M as:

M = Max{ 0, Min{ L(dep), L(le), Obj }}
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The Form of Metamodel 4
Solve these integral equation exactly:

∫∫ ==
)()(

)()(   ),()(
leT

Tx

depT

Tx

leRSDdttAdepRSDdttA

Then use regression to determine coefficients for:

[ ]TxdepTVcVTxcVTdelayccdepD −++−= )()( 3210

[ ] ∆DrollcTxT(le)VcVTxcVTdelayccD(le) 87654 −−++−=



RAND 49

Scorecard for Metamodels 1-4

Yes, butYesFragmentsNoStoryline
83084140RMSE (km)

YesYesNoNoCrit Comps
551014# Aggreg Vars
991115# Calib Coeffs

Model 4Model 3Model 2Model 1

Fit linear models L(dep) and L(le) to cases where:

0<D(dep)<Obj, 0<D(le)<Obj

Calculate metamodel M as:

M = Max{ 0, Min{ L(dep), L(le), Obj }}
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Summary of
Motivated Metamodeling Experiment

• Statistics uninformed by phenomenology yielded 
a poor metamodel
– EXHALT-CF is not linear, and it is not smooth
– Strategy choice (“In Depth” vs. “Leading Edge”) 

introduces a “kink”
• Adding phenomenology from bottom up yielded a 

better but still mediocre metamodel
– Built in meaningful combinations of low-level variables
– Inputs still related to outcome through a “black box”

• Adding phenomenology from top down yielded 
good to very good metamodels
– Story (theory, if you prefer) now connects inputs to 

outcome -- no more “black box”
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Wrap-up:
MRM is a Fruitful Response to:

• Cognitive needs
– Understanding
– Explaining to colleagues
– Explaining to clients

• Need for breadth AND depth
– MRM ties models at different 

levels into a consistent 
package

• Massive uncertainty
– Unbridled extrapolation 
– Exploratory analysis
– Need models with few input 

variables

A story (theory)
made formal becomes
a metamodel,
validated by tests for
consistency

Breadth of scope

Depth
of

detail

feasible

infeasible

Need a different view of
validation

- Model structure correct
- Domain includes cases
of interest  
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Backups
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The What and Why of Metamodels

• What is a metamodel?
– A relatively small, simple model that mimics selected 

behaviors of a large, complex model
• Some reasons to build a metamodel

– Cognitive: You need a plausible story to explain why the 
large model behaves as it does

– Exploratory analysis: A small model has the analytic 
agility for exploring behavior over a vast input domain

– Parsimony: Having a small number of independent 
variables is so important that we call it out separately
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Taxonomy of Models

Models

Low Resolution High Resolution

Theory-BasedEmpirical Metamodels

Purely
statistical

Theory-
motivated



RAND 55

Importance of MRM

• Cognitive needs
– Use high-resolution models to investigate underlying 

phenomena
– Use low-resolution models for analysis of choice, and 

for forest-vs.-trees reasons
• Explanatory power
• Uncertainty, ignorance, and chaos

– Detail is not the same as knowledge
• Exploratory analysis, analytical agility

– Economy
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Lessons About Long Range Precision Fires 
(from Exploratory Analysis with PEM)

• Effectiveness of long-range precision fires varies by a factor of 
50-100, depending on:

– Time_of_last_update (TOA_error)
– Weapon characteristics (Footprint)
– Terrain (Clearing widths)
– Density of Red column

• Small clearings nullify value of a large footprint, but enhance 
the value of a small TOA_error

• High Red density nullifies importance of TOA_error
• A large footprint, high TOA_error weapon (ATACMS/BAT) is 

more effective than a small footprint, low TOA_error weapon 
(aircraft-delivered SFW) only if both Red density and clearing 
width are sufficiently large

– I.e., if on average ATACMS/BAT finds enough Red vehicles in killing zone

Conclusions are quantitative, not just qualitative
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Estimating Shots per Day:
A Loose End

• Objective was to estimate kills per day by ATACMS/BAT
• We have:

– Kills/salvo = f(# vulnerable AFVs)
– # vulnerable AFVs = g(TOA_error, footprint, terrain, 

Red_formation)
• We still need:

– # shots per day by TOA_error, footprint, terrain, and 
Red_formation

• Don’t know how to get it from high-resolution simulation, 
so assume a number
– Based on shot opportunities?
– Or on capacity to shoot?
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Kills per Salvo is Highly Variable
(DSB ‘98 salvos with 5 vulnerable AFVs in footprint)
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Kills per Salvo is Highly Variable - II
(DSB ‘98 salvos with 10 vulnerable AFVs in footprint)
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The Usual Definition of Consistency 
Between High- and Low-Resolution Models

Start

High resolution
inputs

High resolution
outputs
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A More General Definition of Consistency 
Between High- and Low-Resolution Models
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Ways to Change Resolution – I
Change Grid Size
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Ways to Change Resolution – II
Use Intermediate Variables
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Ways to Change Resolution – III
Physical Versus Statistical Description
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Ways to Change Resolution - IV
Abstraction

• In PEM, the concept of “clearing” is elementary
• In high-resolution simulation, the concept must be derived 

from more elementary constructs (terrain, etc. )
• Definition of a clearing depends on resolution

– Man-in-the-loop must see a clearing to target it (low resolution)
– Weapon detects vehicles in the open from close up (high 

resolution)
• Definition may also depend on weapon characteristics

– Orientation effects (e.g., LOCAAS)
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Terrain Seen at Low Resolution
(DSB ‘98)

Box shown at high
resolution (next chart)
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A Clearing Seen At High Resolution
(DSB ‘98)
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Use a Story to Guide Extrapolation

“Early in the process the evolution of the system 
should be dominated by the expansion of the cloud, the 
rate of which is proportional to t3.  Later the evolution 
the system should be dominated by a decay process, 
which occurs like e-αt.  So the quantity of interest 
should rise to a maximum and then fall asymptotically 
to zero.”
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Our Modus Operandi is Experimental

• In a real-world problem, the large model could:
– Have thousands of inputs
– Be costly to run
– Provide only a few cases for statistical analysis

• For this exercise our large model is EXHALT-CF:
– Approximately 60 inputs
– Small enough to allow us to generate unlimited cases
– Complex enough to provide a fair test 

• We explore the spectrum between the extreme 
approaches
– Start with “pure” statistics
– Progressively add more phenomenology
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Generate an Analysis Data Set

• Specify distributions for 25 EXHALT-CF input 
variables
– Mostly uniform distributions
– Sample all possible regions without regard for likelihood

• Set remaining input variables to constants
• Generate a Monte Carlo sample of 1000 cases
• Collect data for each case
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Poor Identification of Nonlinearities in 
Metamodel 1

METAMODEL 1

Coeff significant at P=.05
Coeff not significant!
Coeff not significant!

Variables for both
strategies affect
halt distances
in all cases

EXHALT
(Vehicles to kill)
=(# divisions)
×(vehicles/division)
×(break point)

(Halt distance)
=Smaller of distances for
“In Depth” strategy,
“Leading Edge” strategy 

Regression frequently generates flatly wrong
conclusions about the importance of variables.
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