DoD Interpretations of the IEEE 1516-2000 series of standards, Release 2

 July 1, 2003

DoD Interpretations of the IEEE 1516-2000 series of standards, IEEE Std 1516-2000, IEEE Std 1516.1-2000, and IEEE Std 1516.2-2000: Release 2

1. Introduction
Some areas of the IEEE Standard For Modeling and Simulation (M&S) High Level Architecture (HLA) 1516-2000 series of standards (IEEE Std 1516-2000, 1516.1-2000, and 1516.2-2000) are not as well-specified as they could be and as a result may have questionable interpretations. Consequently, as a guide to RTI developers and users, we offer the following U.S. Department of Defense interpretations of ambiguous portions.

How to use this document
This document sets forth the current release (Release 2) of the U.S. DoD Interpretations of the IEEE 1516-2000 series of standards for the modeling and simulation (M&S) High Level Architecture (HLA). As the DoD gains experience using the HLA, this document is expected to grow and change. In particular, additional interpretations may be added or existing interpretations may be deleted as deemed necessary. Any time interpretations are added or deleted, a revised DoD Interpretations document, which has a unique number (e.g. Release N), will be released.

RTI implementations that are verified as compliant to the IEEE 1516-2000 series of standards are verified as compliant not only to IEEE Std 1516-2000, IEEE Std 1516.1-2000, and IEEE Std 1516.2-2000, but also to a particular release of the DoD Interpretations of the IEEE 1516-2000 series of standards. All RTIs will be verified for compliance to the latest release of the DoD Interpretations of the IEEE 1516-2000 series of standards. The only exception to this rule would be certification of an RTI that began verification testing before the latest release of the DoD Interpretations was made available. In this case, an RTI can be verified to the previous release of the DoD Interpretations if the RTI developer so wishes.

Release 1 of the DoD Interpretations is available on the DMSO web site. Starting with release 2 of the DoD interpretations, all previous releases of the DoD Interpretations can be constructed from the current release of the DoD Interpretations using the pedigree feature that is associated with each individual interpretation in the DoD Interpretations document. The pedigree feature is a label that appears in square brackets [] at the end of each individual interpretation in this document. It has the form [New in Release x] or [New in Release x; Deleted in Release x+2], where x is the number 2 or greater. The pedigree indicates in which release the interpretation was introduced ("New in") and, if appropriate, in which release the interpretation was deleted ("Deleted in"). An interpretation that has a pedigree of the form [New in Release x], for example, is present in not only release x of the DoD Interpretations document, but in all subsequent releases of the DoD Interpretations document up to and including the current release. This interpretation is not present, however, in any release of the DoD Interpretations Document preceding release x. An interpretation that has a pedigree of the form [New in Release x; Deleted in Release x+2] is present in only releases x and x+1 of the DoD Interpretations document.

2. Definitions and Federation Management Interpretations
Definition 3.1.66: published

Interpretation 1

Part (a) of this definition reads,

"pertaining to an object class such that, from the perspective of a given joined federate, there is at least one attribute of the object class that was an argument to a Publish Object Class Attributes service invocation that was not subsequently unpublished via the Unpublish Object Class Attributes service."

Part (a) of this definition is changed to read (changes in boldface),

"pertaining to an object class such that, from the perspective of a given joined federate, there is at least one attribute available at that object class that, along with the object class, was an argument to a Publish Object Class Attributes service invocation that was not subsequently unpublished at that object class via the Unpublish Object Class Attributes service."

Rationale: Because it is possible to invoke the Publish Object Class service with an object class and an empty set of attributes, it should be made clear that an object class is not considered to be "published" unless at least one of the attributes available at that class was published along with the object class. An object class can only be considered to be published if at least one of the attributes available at that class was an argument to the Publish Object Class Attributes service along with the object class. A pre-condition of the Register Object Instance service is that "the joined federate is publishing the object class". Because of the definition of "published" above, this means that the federate must have invoked the Publish Object Class Attributes service for both that object class and for at least one available attribute of that object class. A federate that only invokes the Publish Object Class Attributes service with an object class and an empty set of attributes (without first invoking the Publish Object Class Attributes service with that object class and a non-empty set of attributes and not subsequently invoking the Unpublish Object Class Attributes service for that object class and those attributes) will not be allowed to register instances of that class. [New in Release 2]

Figure 3: Lifetime of a Federate

Interpretation 1

Many services in 1516.1 have preconditions and exceptions that are worded simply “Save in progress” or “Save not in progress”. In all cases, the phrase “save in progress” refers to the “Federate Save in Progress” state as shown in the statechart in Figure 3. A save is in progress at a given federate if the federate is in the “Federate Save in Progress” state. [New in Release 2]

Interpretation 2

Many services in 1516.1 have preconditions and exceptions that are worded simply “Restore in progress” or “Restore not in progress”. In all cases, the phrase “restore in progress” refers to the “Federate Restore in Progress” state as shown in the statechart in Figure 3. A restore is in progress at a given federate if the federate is in the “Federate Restore in Progress” state. [New in Release 2]

Service 4.4: Join Federation Execution

Interpretation 1

The introductory text of this service reads,

“The returned joined federate designator shall be unique for the lifetime of the federation execution.”

This text is changed to read (changes in boldface),

“The returned joined federate designator shall be unique for the lifetime of the federation execution, as long as a restore is not in progress at any federate.”

Rationale: While a restore is in progress at one or more federates, it is possible that two different federates in the federation execution could have the same joined federate designator, one federate having the designator that was supplied to it by the Join Federation Execution service and one federate having the designator that was supplied to it by the Initiate Federate Restore † service. Therefore, the introductory text of the Join Federation Execution service is incorrect as written and needs to be amended as described in the interpretation above in order to be correct. (For further information, see interpretation 2 of Service 4.24, Query Federation Restore Status.) [New in Release 2]
Service 4.5: Resign Federation Execution

Interpretation 1

The following text is added to the introductory text of this service description:

“If a federate invokes this service with either directive 1, 4, or 5, then for each instance attribute that becomes unowned as a result, if no joined federates are in either the “Acquiring” or “Willing to Acquire” state with respect to the specified instance attribute, the RTI shall try to identify other joined federates that are willing to own the instance attribute. If any joined federate is in either the “Acquiring” or “Willing to Acquire” state with respect to the specified instance attribute, the RTI may try to identify other joined federates that are willing to own the instance attribute. The mechanism that the RTI shall use to try to identify other joined federates that are willing to own the instance attribute is invocation of the Request Attribute Ownership Assumption † service at joined federates that are both eligible to own the instance attribute and not in either the “Acquiring” or “Willing to Acquire” state with respect to the specified instance attribute. As long as the instance attribute remains unowned, the RTI shall try to identify joined federates that are willing to own the instance attribute; but once the instance attribute becomes owned, the RTI should not invoke the Request Attribute Ownership Assumption † service at any additional federates.”

Rationale: The Resign Federation Execution service description does not explain or even mention the mechanism by which the RTI shall try to find an owner for unowned instance attributes that become unowned as the result of invocation of the Resign Federation Execution service with directive 1, 4, or 5 (all of which involve unconditional divestiture). The text in this interpretation describes this mechanism. It makes clear the requirement that the RTI must try to find an owner for unowned instance attributes that become unowned as the result of the explicit use of an ownership management directive. If there are no federates that are trying to acquire an unowned instance attribute, then the RTI must use the Request Attribute Ownership Assumption † service as the mechanism for offering ownership of the unowned instance attribute to federates that are eligible to own it. If there is one or more federate that is trying to acquire an unowned instance attribute, then the RTI may either give ownership of the instance attribute to one of the federates that are trying to acquire it without offering ownership of it to other eligible federates, or it may use the Request Attribute Ownership Assumption † service to offer ownership of the unowned instance attribute to eligible federates before granting ownership of the attribute to a federate that expresses an interest in acquiring it. If the instance attribute becomes owned before the RTI has invoked the Request Attribute Ownership Assumption † service at one or more federates, there is no need for the RTI to invoke the Request Attribute Ownership Assumption † service at those federates. [New in Release 2]

Service 4.16: Query Federation Save Status
Interpretation 1

Precondition (c) of this service,

"Save in progress,"

and exception (b) of this service,

"Save not in progress,"

are both deleted. The “Save not in progress” exception is also deleted from the APIs.

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. The Federation Save Status Response returns a list of joined federates and the save status for each. One of the save status values that can be returned is “no save in progress”. It is inconsistent for the Query Federation Save Status service to have a pre-condition that a save must be in progress when it is invoked, and at the same time for one of the valid save status values that can be returned by the Federation Save Status Response † service to be “no save in progress”. In fact, it is not necessary that a save be in progress for a federate to invoke the Query Federation Save Status service. The condition "save in progress" is a property of a federate, not of a federation execution. It is possible that at any given time in a federation execution, some federates have a save in progress and others do not, and it does not make sense to restrict those federates at which a save is not in progress from querying the status of the save at other federates in the federation at which the save is in progress. The following is an example of a scenario in which some federates have a save in progress and others do not:

There are three federates in the federation execution; all are time-regulating and time-constrained at logical time 0.

Fed1 has a lookahead value of 3 and Fed2 and Fed3 each have lookahead values of 1.

Fed1 schedules a save at logical time 5.

Fed2 and Fed3 both invoke the Time Advance Request (TAR) service to time 6.

Fed1 invokes the TAR service to time 4.

Fed2 and Fed3 will each receive Initiate Federate Save † callbacks, because the smallest timestamped-message that they can each get from each other is 6+1 = 7, and the smallest timestamped-message that they can each get from Fed1 is 4+3 = 7.

At this point, a save is not in progress at Fed1 but it is in progress at Fed2 and FFed3. It is reasonable for Fed1 to query the status of the save at this time, even though the save is not in progress at Fed1. [New in Release 2]

Service 4.21: Initiate Federate Restore †
Interpretation 1

The last sentence of the introductory text of this service description reads,

“As a result of this service invocation, a joined federate’s designator could change from the value supplied by the Join Federation Execution service.”

This sentence is changed to read,

“The joined federate designator argument of this service indicates to this federate what its designator shall be after invocation of the Federation Restored † service.”

Post-condition (b) of this service reads,

“The joined federate’s designator may be changed.”

Post-condition (b) is changed to read,

“The joined federate has been notified what it’s post-restore designator will be.”

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. In order to minimize the interval of time during which federate designators may not be unique and well-defined across the federation execution, the moment that a restoring federate’s designator changes from the pre-restore designator to the post-restore designator was moved from being a post-condition of the Initiate Federate Restore † service to being a post-condition of the Federation Restored † service. (For further information, see interpretation 2 of Service 4.24, Query Federation Restore Status.) [New in Release 2]
Service 4.23: Federation Restored †
Interpretation 1

A new post-condition (c) is added that reads,

“The joined federate’s designator is now the value that was provided in the joined federate designator argument of the Initiate Federate Restore † service. As a result, the joined federate’s designator may change from the value that was supplied by the Join Federation Execution service.”

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. In order to minimize the interval of time during which federate designators may not be unique and well-defined across the federation execution, the moment that a restoring federate’s designator changes from the pre-restore designator to the post-restore designator was moved from being a post-condition of the Initiate Federate Restore † service to being a post-condition of the Federation Restored † service. (For further information, see interpretation 2 of Service 4.24, Query Federation Restore Status.) [New in Release 2]

Service 4.24: Query Federation Restore Status

Interpretation 1

Pre-condition (d) of this service,

"Restore in progress,"

and exception (c) of this service,

"Restore not in progress"

are both deleted. The “Restore not in progress” exception is also deleted from the APIs.

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. The rationale for this interpretation is analogous to the rationale for interpretation 1 of Service 4.16: Query Federation Save Status. The Federation Restore Status Response returns a list of joined federates and the restore status for each. One of the restore status values that can be returned is “no restore in progress”. It is inconsistent for the Query Federation Restore Status service to have a pre-condition that a restore must be in progress when it is invoked, and at the same time for one of the valid restore status values that can be returned by the Federation Restore Status Response † service to be “no restore in progress”. In fact, it is not necessary that a restore be in progress for a federate to invoke the Query Federation Restore Status service. The condition "restore in progress" is a property of a federate, not of a federation execution. It is possible that at any given time in a federation execution, some federates have a restore in progress and others do not, and it does not make sense to restrict those federates at which a restore is not in progress from querying the status of the restore at other federates in the federation at which the restore is in progress. [New in Release 2]
Interpretation 2

The following text is added to the service description of the Query Federation Restore Status service:

“Although each federate is provided with its post-restore joined federate designator as an argument of the Initiate Federate Restore † service, this new federate designator does not take effect immediately. Once the Federate Restore Complete service has been invoked by all federates in the federation execution, the RTI transitions from using the pre-restore federate designators to using the post-restore federate designators. Each federate begins using its post-restore designator when the Federation Restored † service is invoked at it. Therefore, during the period of time after the last federate has invoked the Federate Restore Complete service and before the Federation Restored † service has been invoked at all federates, federate designators are undefined.

If the Query Federation Restore Status service is invoked before all federates have invoked the Federate Restore Complete service, the restore status returned in the Federation Restore Status Response † service will use the pre-restore federate designators for all federates. If the Query Federation Restore Status service is invoked after the Federation Restored † service has been invoked at all federates, the restore status returned in the Federation Restore Status Response † service will use the post-restore federate designators for all federates, and the status at each federate will be “No restore in progress”. If the Query Federation Restore Status service is invoked during the time interval after the last federate has invoked the Federate Restore Complete service and before the Federation Restored † service has been invoked at all federates, the restore status returned in the Federation Restore Status Response † service will be unpredictable because federate designators are in flux and therefore undefined during this interval. The result of sending the MOM HLAresignFederationExecution interaction during this interval will also be unpredictable.”

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. Federate designators may change as a result of federation restoration. Because federate designators cannot be guaranteed to change simultaneously in a distributed system, there may be a period of time during which pairs of federates share the same federate designator, with one federate still using its pre-restore designator and the other federate using its post-restore designator. The results of invoking the Query Federation Restore Status service and of sending the MOM HLAresignFederationExecution interaction during this period of time when federate designators may not be unique will therefore be unpredictable. This interpretation defines the interval during which federate designators are undefined to be the interval after the final Federate Restore Complete service has been invoked at every federate but before the final Federation Restored † service has been invoked at every federate. The results of the Query Federation Restore Status service are well-defined outside of this interval, but unpredictable within it.

By limiting the interval to this period of time after which all federates have invoked the Federate Restore Complete service, the interpretation enables a manager federate to monitor and manage other federates during the federation restoration. A manager federate may use the Query Federation Restore Status service to identify those federates that have completed their restoration process (those returning a “Federate waiting for federation to restore” status) and those federates that may be having trouble restoring or that may be experiencing some sort of problem. A manager federate that wants to keep track of the progress of the restoration and possibly take action such as sending a MOM HLAresignFederationExecution or MOM HLAfederateRestoreComplete interaction on behalf of a federate is advised to refrain from invoking the Federate Restore Complete service until after all other federates have invoked the Federate Restore Complete service, which would be indicated by the Federation Restore Status Response † service returning a federation restore status of “Federate waiting for federation to restore” for all other federates.
 [New in Release 2]

3. Declaration Management Interpretations
Figure 10: Class Attribute (i,j)

Interpretation 1

The history transition on the right side of this diagram reads,

"Publish (i,{}) or Unpublish(i,{})".

This history transition is changed to read,

 "Subscribe(i,{}) or Unsubscribe (i,{})"..

Rationale: This corrects a typographical error. [New in Release 2]

Figure 11: Class Attribute (i, HLAprivilegeToDeleteObject)

Interpretation 1

The history transition on the right side of this diagram reads,

"Publish (i,{}) or Unpublish(i,{})".

This history transition is changed to read,

 "Subscribe(i,{}) or Unsubscribe (i,{})"..

Rationale: This corrects a typographical error. [New in Release 2]

Figure 12: Interaction Class (m)

Interpretation 1

The transitions on the left side of this diagram between the "Unpublished (m)" state and the "Published (m)" state read,

"Publish” and “Unpublish".

These transitions are changed to read,

 "Publish (m)" and "Unpublish (m)".

Rationale: The “m” is required to denote publication and unpublication of a specific interaction class. [New in Release 2]

Service 5.2 Publish Object Class Attributes

Interpretation 1

The second bulleted item of the introductory text for this service reads,

“—By using ownership management services to acquire instance attributes of object instances. The joined federate may acquire only those instance attributes for which the joined federate is publishing the corresponding class attributes.”

This bulleted item is changed to read (changes in boldface),

“—By using ownership management services to acquire instance attributes of object instances. The joined federate may acquire only those instance attributes for which the joined federate is publishing the corresponding class attributes at the known class of the specified object instance.”

Rationale: This additional text is needed to provide consistency with various ownership management services. For example, it is needed to provide consistency with precondition (d) of the Attribute Ownership Acquisition Notification † service, which stipulates that the joined federate must be publishing the corresponding class attributes at the known class of the specified object instance. [New in Release 2]
Service 5.3: Unpublish Object Class Attributes

Interpretation 1

The first part of pre-condition (e) of this service reads,

“For each class attribute of the specified class that is published by the joined federate and is to be unpublished by this service invocation, there are no joined federate-owned corresponding instance attributes for which the joined federate has either”

The first part of pre-condition (e) is changed to read (changes in boldface),

"For each class attribute of the specified class that is published by the joined federate and is to be unpublished by this service invocation, there are no corresponding instance attributes that are unowned by this joined federate and for which the joined federate has either"

Rationale: Pre-condition (e) of this service incorrectly implies that a federate could invoke the Attribute Ownership Acquisition service or the Attribute Ownership Acquisition If Available service on an instance attribute that the federate already owns. This textual modification is needed to correct this misleading implication. [New in Release 2]
Service 5.6: Subscribe Object Class Attributes

Interpretation 1

The fifth paragraph of this service description reads,

"If a subscription is provided for a class attribute that is already subscribed by the joined federate, then the subscription shall take on the effect of the optional passive subscription indicator from the most recent Subscribe Object Class Attributes service invocation."

This paragraph is changed to read,

“The use of the optional passive subscription indicator shall act as follows:

Each subscribed class attribute is subscribed either actively or passively (but not both actively and passively) at a given object class; and two class attributes that are subscribed at the same object class may be subscribed differently from each other: one active and one passive. Each class attribute specified in a given invocation of the Subscribe Object Class Attributes service shall take on the effect of the optional passive/active subscription indicator supplied (or not supplied) with that service invocation. Invoking the Subscribe Object Class Attributes service with an empty set of class attributes shall not change the active/passive subscription nature of any of the attributes that are subscribed at the specified object class. Each use of the Subscribe Object Class Attributes service shall add to the subscriptions specified to the RTI in any previous Subscribe Object Class Attributes service invocation for the same object class and may change the active/passive nature of previous class attribute subscriptions for that object class.”

Rationale: As originally written, this service description does not completely specify the intended effect of the optional passive subscription indicator. It does not say what should happen in the event that a subscription is provided for a class attribute that is not already subscribed. Furthermore, the text does not make clear whether the active/passive characteristic applies on a per-attribute or a per-class basis. This interpretation explains that invocations of the Subscribe Object Class Attributes service for any given object class shall be cumulative with respect to the set of attributes subscribed at that class, but substitutive with respect to whether each attribute is subscribed actively or passively. If the current invocation of the Subscribe Object Class Attributes service includes a given attribute as an argument, the property of active versus passive for that attribute is substituted according to the value (or absence) of the optional passive subscription indicator argument to the current invocation of the Subscribe Object Class Attributes service. [New in Release 2]
Service 5.10: Start Registration For Object Class †
 Interpretation 1

Pre-condition (c) of this service reads,

“At least one of the class attributes that the joined federate is publishing at the specified object class is actively subscribed to at the specified object class or at a superclass of the specified object class by at least one other joined federate in the federation execution.”

Pre-condition (c) of this service is changed to read,

"At least one other joined federate in the federation execution is actively subscribed to at least one of the class attributes that the joined federate is publishing at the specified object class, and the object class at which the subscribing federate is actively subscribed to that attribute is the subscribing federate's candidate discovery class of an object instance registered at the specified object class."

Rationale: The purpose of the Start Registration for Object Class † service is to notify a publishing federate that registration of new object instances of the specified object class is advised. In other words, if only DM and not DDM is used in a federation execution, then it is the intention that receipt of the Start Registration For Object Class † service at a federate indicates to that federate that if it were to register an object instance at the specified class, then at least one other federate in the federation execution would discover that object instance and receive reflects for at least one instance attribute of that object instance. The way that pre-condition (c) is worded in the standard, this intention is not met because it specifies only that at least one other federate must be actively subscribed to at least one published attribute at the specified class or at a superclass of the specified class. This condition is not sufficient to ensure that the subscribing federate would discover the object instance. In fact, the subscribing federate must be subscribed to at least one published attribute at the candidate discovery class of an object instance in order for the subscribing federate to discover the object instance.
Consider the following example:

Fed1 publishes object class A.B (attribute X).

Fed2 subscribes to object class A.B (attribute Y) and to object class A(attribute X).

If Fed1 were to register an object instance of class A.B, Fed2 would not discover that object instance because Fed2 is not subscribed to attribute X (the only attribute that Fed1 is publishing) at the candidate discovery class of the object instance (class A.B). According to the way that pre-condition (c) is worded in the standard, however, Fed1 would receive a Start Registration For Object Class † service invocation for object class A.B. According to the way that this interpretation changes pre-condition (c) , Fed1 would not receive a Start Registration For Object Class † service invocation. [New in Release 2]

Service 5.11: Stop Registration For Object Class †
Interpretation 1

Pre-condition (d) of this service reads,

“None of the class attributes that the joined federate is publishing at this object class is actively subscribed to at the specified object class or at a superclass of the specified object class by any other joined federate in the federation execution.”

Pre-condition (d) of this service is changed to read,

"None of the class attributes that the joined federate is publishing at the specified object class is actively subscribed to by any other joined federate in the federation execution at what would be the subscribing federate's candidate discovery class of an object instance registered at the specified object class."

Rationale: The purpose of the Stop Registration for Object Class † service is to notify a publishing federate that registration of new object instances of the specified object class is not advised. In other words, it is the intention that receipt of the Stop Registration For Object Class † service at a federate indicates to that federate that if it were to register an object instance at the specified object class, then there is no other federate in the federation execution that would discover that object instance. Although the wording of pre-condition (d) meets this intention, it is overly restrictive, such that there could be instances in which registration of new object instances is not advised, even though pre-condition (d) is not met. As long as a subscribing federate is not subscribed to any of the published class attributes at the candidate discovery class, the subscribing federate will not discover a registered object instance, even if the federate is subscribed to one or more of the published class attributes at a super-class of the specified class.

Consider the following example:

Fed1 publishes object class A.B (attribute X).

Fed2 subscribes to object class A.B (attributes X and Y).

Fed 1 receives a Start Registration For Object Class † callback for object class A.B.

Fed2 subscribes to object class A (attribute X).

Fed2 unsubscribes to object class A.B (attribute X) (so Fed2 is still subscribed to object class A.B (attribute Y)).

If Fed1 were to register an object instance of class A.B, Fed2 would not discover that object instance because Fed2 is not subscribed to attribute X (the only attribute that Fed1 is publishing) at the candidate discovery class of the object instance (class A.B). According to the way that pre-condition (d) is worded in the standard, however, Fed1 would not receive a Stop Registration For Object Class † service invocation for object class A.B, because Fed2 is subscribed to attribute X at class A. According to the way that this interpretation changes pre-condition (d), Fed1 would receive a Stop Registration For Object Class † service invocation, because Fed2 is not subscribed to attribute X at the candidate discovery class of an object instance registered at class A.B. [New in Release 2]

4. Object Management Interpretations
Section 6.1: Overview of Object Management

Interpretation 1

Part of the sixth paragraph of this clause reads,

“An instance attribute of an object instance shall be in scope for joined federate F if

 a) The object instance is known to the joined federate,

 b) The instance attribute is owned by another joined federate”

Item (b) above is changed to read (changes in boldface),

“b) The instance attribute is owned either by another joined federate or by the RTI”.

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. Note that there are three possible states of ownership of any given instance attribute: it may be owned by a federate, owned by the RTI, or not owned. Instance attributes of pre-defined attributes of MOM object instances are owned by the RTI, rather than being owned by another federate. This interpretation is required in order to allow a federate that is subscribed to a pre-defined class attribute of a MOM object class to receive the Attributes In Scope † callback for an instance attribute of a MOM object instance at that class. Without this interpretation, it would not be possible for any federates to receive Attributes In Scope † callbacks for any instance attributes corresponding to pre-defined MOM object class attributes. [New in Release 2]

Interpretation 2

The last part of the sixth paragraph of this clause reads,

“c) Either the instance attribute’s corresponding class attribute is a subscribed attribute

1) Of the known class of the object instance, or

2) Of the instance attribute overlaps the subscription region set of the instance attribute’s corresponding class attribute at the known class of the instance attribute at the subscribing joined federate”

Item (c) is changed to read,

“c) either

• The instance attribute’s corresponding class attribute is a subscribed attribute of the known class of the object instance, or

• The instance attribute’s corresponding class attribute is a subscribed attribute of the known class of the object instance with regions, and the update region set of the instance attribute overlaps the subscription region set of the instance attribute’s corresponding class attribute at the known class of the instance attribute at the subscribing joined federate.”

Rationale: Part 2 of item (c) did not make sense as written. The corrected text is consistent with the appropriate preconditions of Service 6.15, Attributes In Scope †. [New in Release 2]

Service 6.4: Register Object Instance

Interpretation 1

According to the second paragraph of this service description,

"the handle provided to the joined federate which registers the object instance shall be the same handle provided to all joined federates which discover the object instance."

The following text should be added to the end of the second paragraph:

“The phrase "the same handle" shall denote handle equality rather than handle identity. Two handles shall be considered to be the same if, according to the comparison operator in each of the APIs (for example, according to the "equals" method in the Java API) the handles would be determined to be equal. The handles shall also have equality between joined federates that are using different language APIs. The handles may be communicated between joined federates via instance attributes or interaction parameters.”

Rationale: The handles provided to each federate must be equal, but they do not have to be the same programming language object. [New in Release 2]
Service 6.5: Discover Object Instance †
Interpretation 1

Pre-condition (d) of this service reads,

“d) The joined federate is subscribed to some class attribute att at the specified object class, and att’s corresponding instance attribute that is part of the specified object instance is owned by another joined federate”.

Pre-condition (d) is changed to read,

“d) The joined federate is subscribed to some class attribute att at the specified object class, and att’s corresponding instance attribute that is part of the specified object instance is either owned by another joined federate or owned by the RTI.”

A corresponding change is also required in clause 6.1 where the conditions for the invocation of the Discover Object Instance † are defined. In the third paragraph of clause 6.1, the first sub-bullet of item (b) reads,

“— Another joined federate (not F) owns i, and”

The first sub-bullet of item (b) is changed to read (changes in boldface),
“— Either another joined federate (not F) or the RTI owns i, and”.

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation.

Note that there are three possible states of ownership of any given instance attribute: it may be owned by a federate, owned by the RTI, or not owned. Instance attributes of pre-defined attributes of MOM object instances are owned by the RTI, rather than being owned by another federate. This interpretation is required in order to allow a federate that is subscribed to a pre-defined class attribute of a MOM object class to discover MOM object instances at that class. Without this interpretation, it would not be possible for any federates to discover MOM object instances. [New in Release 2]
Service 6.7: Reflect Attribute Values †
Interpretation 1

The sixth paragraph of the Reflect Attribute Values † service description reads,

“If specified instance attributes have available dimensions and the Convey Region Designator Sets Switch is enabled, the set of sent region designators argument shall contain the update region set, if any, that was used for update of the instance attributes at the joined federate, which invoked the corresponding Update Attribute Values service.”

This paragraph is changed to read (changes in boldface),

“If specified instance attributes have available dimensions and the Convey Region Designator Sets Switch for this joined federate is enabled, the set of sent region designators argument shall contain the update region set.”

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. The Convey Region Designator Sets Switch has been changed in this interpretation document so that it is no longer a single federation-wide switch. Instead, each federate shall have its own Convey Region Designator Sets Switch and the value of a federate’s own switch is a determining factor as to whether or not that federate shall receive the set of sent region designators argument. The change in the Reflect Attribute Values † service description shown above is needed because the Convey Region Designator Sets Switch is now applicable on a per-federate, rather than on a federation-wide, basis. For further information, see interpretation 1 of Clause 9.1.7. [New in Release 2]
Service 6.8: Send Interaction

Interpretation 1

The second sentence of this service description reads,

"The interaction parameters shall only be those in the specified class and all super-classes, as defined in the FDD."

This sentence is changed to read,

"Only parameters that are available at the specified interaction class may be sent in a given interaction, as defined in the FDD. A federate is not required to send all available parameters of the interaction class with the interaction.”

Rationale: This interpretation is needed for clarification. [New in Release 2]
Service 6.9: Receive Interaction †
Interpretation 1

The sixth paragraph of the Receive Interaction † service description reads,

“If the specified interaction has available dimensions and the Convey Region Designator Sets Switch is enabled, the set of sent region designators argument shall contain the update region set, if any, that was supplied to the corresponding Send Interaction With Regions service invocation by the sending joined federate.”

This paragraph is changed to read (changes in boldface),

“If the specified interaction has available dimensions and the Convey Region Designator Sets Switch for this joined federate is enabled, the set of sent region designators argument shall contain the update region set.”

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. The Convey Region Designator Sets Switch has been changed in this interpretation document so that it is no longer a single federation-wide switch. Instead, each federate shall have its own Convey Region Designator Sets Switch and the value of a federate’s own switch is a determining factor as to whether or not that federate shall receive the set of sent region designators argument. The addition of the words “for this federate” in the Receive Interaction service description shown above is needed because the Convey Region Designator Sets Switch is now applicable on a per-federate, rather than on a federation-wide, basis. For further information, see interpretation 1 of Clause 9.1.7. [New in Release 2]

Service 6.10: Delete Object instance

Interpretation 1

Post-condition e) of Delete Object Instance reads,

" e) If the sent message order type is TSO, the object instance will no longer be known at the invoking federate (and will no longer exist as far as the federate is concerned) once the federate advances its logical time to or past the specified time. If the federate disables time-regulation, the object instance immediately becomes unknown to the federate and ceases to exist as far as the federate is concerned. The object instance may still be discovered by other federates until their logical times are greater or equal to the specified time of the deletion."

Post-condition e) is changed to read (changes in boldface),

" e) If the sent message order type is TSO, the object instance will no longer be known at the invoking federate (and will no longer exist as far as the federate is concerned) once the federate's GALT advances to or past the specified time. If the federate disables time-regulation, the object instance immediately becomes unknown to the federate and ceases to exist as far as the federate is concerned. The object instance may still be discovered by other federates until their logical times are greater or equal to the specified time of the deletion."

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. A federate’s logical time advances when the federate receives a Time Advance Grant callback, and so may advance in chunks, rather than smoothly. If a federate invokes the Delete Object Instance service with a timestamp in the future and then invokes a Time Advance Request with a timestamp larger than the time stamp that was in the delete, the federate could incorrectly continue to know about the removed object instance during the interval of simulation time after its GALT has advanced to or past the time of the delete, but before the federate receives a time advance grant, which will cause its time to advance past the time of the delete. This problem situation is prevented by specifying that the deleted object instance will no longer be known at the federate once the federate’s GALT advances to or past the delete time rather than when the federate’s logical time advances to or past the delete time. [New in Release 2]

Service 6.11: Remove Object Instance †
Interpretation 1

Postcondition (b) of this service reads,

“The object instance is no longer known by the federate and no longer exists as far as the federate is concerned”

This postcondition is changed to read,

"If a timestamp was provided and the receive message order type was TSO, then when the federate's GALT is greater than or equal to the time in the timestamp, the object instance will no longer be known by the federate and will no longer exist as far as the federate is concerned. If the federate successfully disables time constrained then the object instance will immediately become unknown by the federate and will no longer exist as far as the federate is concerned.

 If a timestamp was not provided or the receive message order type was RO, the object instance is no longer known by the federate and no longer exists as far as the federate is concerned."

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. This change to the postcondition is required to keep the postcondition of the Remove Object Instance service consistent with the postconditions of the Delete Object Instance service in the case in which the Delete Object Instance service has a sent message order type of TSO and the resulting Remove Object Instance service has a receive message order type of TSO. According to the postconditions of the Delete Object Instance service, if an object instance is deleted with a timestamp in the future, that object instance can still be updated with a time stamp value less than or equal to the time stamp value specified in the Delete Object Instance service invocation. In order for such updates to be able to be reflected at a subscribing federate, however, the subscribing federate must still know about the object instance after the Remove Object Instance service is invoked and until the subscribing federate’s GALT advances to a time that is greater than or equal to the specified time of the delete/remove, or until the subscribing federate stops being time constrained. Without this interpretation, a federate that receives a Remove Object Instance ceases to know about the object instance immediately, even if the federate’s GALT has not advanced to the time specified in the delete/remove; therefore, without this interpretation, the subscribing federate will not reflect an update that is sent with a timestamp less than the delete/remove. Clearly this update is intended to be reflected, otherwise there is no point in allowing it to be sent.

To illustrate this interpretation in action, consider the following example:

Fed1 and Fed2 are both time-constrained and time-regulating, both have lookaheads of 1, and both are at logical time 0.

Fed1 publishes object class A, attribute X and Fed2 subscribes to the same.

Fed1 registers object1, of class A and Fed2 discovers object1.

Fed 1 invokes Delete Object Instance (object1, TS = 10).

Fed2 invokes Flush Queue Request(3)

As a result of this Flush Queue Request, Fed2 receives the following callbacks:

Remove Object Instance (object1, TS=10)

Time Advance Grant(1)

Fed1 invokes Update Attribute Values (X of object1, with TS=5).

Fed2 invokes Flush Queue Request(7)

The callbacks that Fed2 will receive as a result of this Flush Queue Request will depend on whether or not the above interpretation is in effect.

If the above interpretation is in effect, then Fed2 will receive:

Reflect Attribute Values(X of object1, with TS = 5)

Time Advance Grant(1)

However, if the above interpretation is not in effect, then when Fed2 received the Remove Object Instance (object1, TS=10) callback above, it immediately ceased to know object1; therefore, now Fed2 will receive only:

Time Advance Grant(1).

Note that as a result of this interpretation, if a federate receives a Remove Object Instance callback with a timestamp in the federate's future, the federate will not be notified by the RTI when the federate's logical time is such that the removed object instance actually becomes unknown to the federate. If it is important for the federate to stop at exactly the simulation time when the object instance becomes unknown, it can accomplish this by specifying the time stamp of the Remove Object Instance service in the parameter of a Flush Queue Request (FQR) (or Next Message Request (NMR)) call. The envisioned way to use the FQR or NMR service is for a federate to specify the time stamp of its next local event as the time stamp parameter of FQR or NMR. If a federate that has received a Remove Object Instance callback with a time stamp in the future uses FQR and NMR in this way, the pre-delivered Remove Object Instance callback becomes a local event once it is delivered, and its time stamp is specified in a FQR or NMR service invocation when it becomes the earliest local event the federate has. If a federate uses this paradigm, eventually the RTI will issue a grant to the time stamp of the Remove Object Instance event. The federate processes all of its events (local ones as well as ones delivered by the RTI) in time stamp order, and its current simulation time is the time stamp of the event it is currently processing. Thus, the federate always knows exactly where it is on the simulation time axis, and in fact has complete control with respect to when and how far it advances in simulation time. [New in Release 2]

Service 6.15: Attributes In Scope †
Interpretation 1

Preconditions (c), (d), and (e) of this service read,

“c) The joined federate knows about the object instance with the specified designator.

d) For each attribute designator specified, the joined federate

 1) Is subscribed to the class attribute at the known class of the object instance at this joined federate, or

 2) Has a subscription region set for the class attribute at the known class of the object instance at the subscribing joined federate and this region set overlaps the update region set of the instance attribute at the time of update.

e) The instance attributes are now in scope.” .”

These three preconditions are replaced by the following single precondition, ,

“The instance attributes have come into scope.”

Rationale: Item (c) in the original text above is deleted because it is redundant. The stipulation that the federate must know about an object instance is already part of the definition of what it means for an instance attribute of that object instance to be in scope at that federate. Therefore, item (c) is deleted. Item (d) in the original text above contradicts the definition of "in scope" that is already provided in clause 3.1.38 of IEEE 1516.1-2000. Invocation of the Attributes In Scope service occurs independent of updates to the specified attributes. According to the definition of "in scope" in 3.1.38, in order for an instance attribute to be in scope, the subscription region set at the subscribing federate and the update region set at the owning federate simply have to overlap; it is not necessary that they overlap at the time of an update. Therefore, item (d) is deleted because it is incorrect. Item (e) was changed from “The instance attributes are now in scope” to “The instance attributes have come into scope” because the Attributes In Scope † advisory should only be invoked upon the occasion of one or more attributes coming into scope.
5. Ownership Management Interpretations

Section 7.1: Overview of Ownership Management
Interpretation 1

The second sentence of the third paragraph of clause 7.1 reads,

"The RTI shall be responsible for attempting to find an owner for instance attributes that are left unowned (either via registration, federate resignation, or some form of divestiture).”

This sentence is changed to read (changes in boldface),

“The RTI shall be responsible for attempting to find an owner for instance attributes that are left unowned as a result of federate resignation or unconditional divestiture.”

What is meant by the RTI “attempting to find an owner” is explained in interpretations for the Resign Federation Execution service (Service 4.5) and the Unconditional Attribute Ownership Divestiture service (Service 7.2) that are found elsewhere in this document.

Rationale: This sentence states a requirement that the RTI be responsible for something without explaining the mechanism by which the RTI shall fulfill this requirement. Other interpretations in this document (interpretations for Unconditional Attribute Ownership Divestiture and Resign Federation Execution), explain that possible invocation of the Request Attribute Ownership Assumption † service is the mechanism according to which the RTI shall fulfill its responsibility for attempting to find an owner for unowned instance attributes when they become unowned as a result of the use of an explicit ownership management service or directive.

There is no suggestion that the RTI should try to find an owner for unowned instance attributes when they either become unowned as a result of registration or unpublishing a class attribute, or when a non-owning federate that was not previously eligible to own the unowned instance attribute becomes eligible to do so. Although the standard is clear and implementable regarding unpublication and registration, it has been determined to be in the DoD’s best interest to include this interpretation. If an instance attribute is unowned as a result of registration or as a result of an owning federate unpublishing a class attribute, then the RTI shall grant ownership of that instance attribute to a federate that is in the “Acquiring” or “Willing to Acquire” state with respect to that instance attribute, if such a federate exists. If there is no federate that is either “Acquiring” or “Willing to Acquire” the instance attribute, however, the RTI shall not use the Request Attribute Ownership Assumption † service to try to find an owner for the instance attribute. Thus, a distinction is being made between the RTI “attempting to find an owner” for an unowned instance attribute (which it shall not do in the case of an instance attribute that is unowned as a result of registration or unpublication) and the RTI granting ownership of an unowned instance attribute to a federate that has already volunteered itself as a willing owner (which the RTI shall always do).

The reason that the RTI shall not try to find an owner for instance attributes that become unowned as a result of registration or unpublication is that if the RTI were to try to find owners in these cases, all eligible federates, including those that are not using ownership management, could potentially receive many Request Attribute Ownership Assumption † callbacks. When a class attribute is unpublished, for example, all corresponding instance attributes that are owned by the unpublishing federate become unowned, and this could potentially be very many instance attributes for which all eligible federates would receive Request Attribute Ownership Assumption † callbacks.

It is acceptable for instance attributes that become unowned as a result of the owning federate invoking the Unconditional Attribute Ownership Divestiture service to cause the RTI to attempt to find an owner because using the Unconditional Attribute Ownership Divestiture service, divestitures must occur on an instance attribute basis. If there is concern that use of the Resign Federation Execution service with a directive to unconditionally divest ownership of all instance attributes may result in the invocation of many Request Attribute Ownership Assumption † callbacks at eligible federates, it should be noted that a federate can prevent these callbacks from being generated by unpublishing class attributes before resigning. The RTI will not try to find owners for instance attributes that become unowned as a result of unpublishing; it will only try to find owners for instance attributes that become unowned as a result of resignation with an unconditional divestiture directive. If a federate wants the convenience of using the Unpublish Object Class Attributes service to disown many instance attributes at once, but it wants the RTI to attempt to find an owner for some of those instance attributes, the federate should unconditionally divest those instance attributes before unpublishing the corresponding class attributes. [New in Release 2]

Interpretation 2

The third sentence of the third paragraph of clause 7.1 reads,

“The RID provided to an RTI may allow the federation to control how often or for how long an RTI will attempt to find an owner for unowned instance attributes.”

This sentence is changed to read (changes in boldface),

“The RID provided to an RTI may allow the federation to control how often or for how long an RTI will attempt to find an owner for unowned instance attributes. For testing purposes, the RTI shall invoke the Request Attribute Ownership Assumption † service once at each federate that is both eligible to own the instance attribute and eligible to receive a Request Attribute Ownership Assumption † service invocation for that instance attribute until the instance attribute becomes owned.”

 Rationale: The RID is vendor-specific information that may or may not be required to run an RTI. Verification testing is not designed to test implementation-specific behavior. Allowing an RTI under test to use any possible RID setting controlling how often or how long the RTI will attempt to find an owner would allow such a wide variety of RTI behavior that it would make testing infeasible. So, for testing purposes, a setting of exactly once will be assumed. [New in Release 2]

Figure 15: Establishing Ownership of Instance Attribute (i, k, j)

Interpretation 1

An additional transition from the Completing Divestiture state into the Waiting for a New Owner to be Found state is added. This transition has as a label that reads,

“Confirm Divestiture failure - No Acquisition Pending Or Federate Willing To Acquire exception”.

Rationale: This new transition corresponds to interpretation 1 of Service 7.6: Confirm Divestiture. [New in Release 2]

Interpretation 2

The transition from the Completing Divestiture state into the Able to Acquire state currently has a label that reads,

“Confirm Divestiture”.

This label is modified to read,

“Confirm Divestiture (success)”.

Rationale: This new transition corresponds to interpretation 1 of Service 7.6: Confirm Divestiture. [New in Release 2]

Interpretation 3

A history state is added within the Acquisition Pending state, and a transition from the Acquisition Pending state to this history state is also added. The label on this transition reads,

 “Attribute Ownership Acquisition”.

Rationale: This new transition corresponds to interpretation 1 of Service 7.8: Attribute Ownership Acquisition. [New in Release 2]

Interpretation 4

An additional transition that is a self-transition from the Willing to Acquire state to itself is added. The label on this transition reads,

 “Attribute Ownership Acquisition If Available [not in “Acquisition Pending”]”.

Rationale: This new transition corresponds to interpretation 1 of Service 7.9: Attribute Ownership Acquisition If Available. [New in Release 2]

Interpretation 5

The transition from the “Owned (i,k,j)” state to the history state with label “Request Attribute Ownership Release †” is deleted. A transition from the “Not Divesting” state to itself is added, and this transition is labeled,

 “Request Attribute Ownership Release †”.

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation.

This change corresponds to interpretation 2 of Service 7.8: Attribute Ownership Acquisition. [New in Release 2]

As a result of the above five interpretations for Figure 15, the statechart in Figure 15 is changed to be depicted as follows:

[image: image1.png]
Section 7.1.4: User-supplied tags
Interpretation 1

The following text is added to clause 7.1.4, User-supplied tags,

“If an RTI-invoked service is not the result of a federate-invoked service, but the RTI-invoked service has a user-supplied tag as a mandatory argument, the user-supplied tag shall be present in the service invocation, but empty. For example, in the Java API, the tag shall be an empty (zero-length) array. This interpretation is applicable not only to RTI-invoked services related to Ownership Management, but to all RTI-invoked services, such as for example MOM HLAmanager.HLAfederate.HLAreport interactions. All received interactions include mandatory user-supplied tag arguments, so the user-supplied tag arguments in MOM HLAmanager.HLAfederate.HLAreport interactions shall be present, but empty.”

Rationale: This section explains that the user-supplied tags that are present in some federate-invoked services shall be present in the specified resulting RTI-invoked services. It does not explain, however, what the user-supplied tags should be in those RTI-invoked services that are not the result of a federate-invoked service.

For example, according to clause 7.1.4, the user-supplied tag present in the Negotiated Attribute Ownership Divestiture service shall be present in any resulting Request Attribute Ownership Assumption † service invocations. However, the RTI may invoke the Request Attribute Ownership Assumption † service at a federate in an attempt to find an owner for an unowned instance attribute. In this case, the Request Attribute Ownership Assumption † service invocation is not the result of a Negotiated Attribute Ownership Divestiture service invocation by another federate. In this case, it is not clear what the content of the user-supplied tag in the Request Attribute Ownership Assumption † service should be. The user-supplied tag, however, is a mandatory argument of the Request Attribute Ownership Assumption † service. Therefore, if the Request Attribute Ownership Assumption † service is not the result of a previous corresponding Negotiated Attribute Ownership Divestiture service invocation, the user-supplied tag shall be present in the Request Attribute Ownership Assumption † service, but it shall be empty.

Other examples in which this interpretation is relevant are:

· Attribute Ownership Acquisition Notification †: If an Attribute Ownership Acquisition Notification † service invocation is received at a federate as a result of an owning federate invoking the Unconditional Attribute Ownership Divestiture service, the Attribute Ownership Divestiture If Wanted service, or the Unpublish Object Class Attributes service, or as a result of the owning federate resigning, the user-supplied tag that shall be present in the Attribute Ownership Acquisition Notification † service shall be empty.
· Provide Attribute Value Update †: If a Provide Attribute Value Update † service invocation is received at a federate as a result of the Auto-Provide Switch being enabled, the content of the user-supplied tag that shall be present in the Provide Attribute Value Update † service shall be empty.
· Request Attribute Ownership Assumption †: If a Request Attribute Ownership Assumption † service invocation is received at a federate as a result of the owning federate invoking the Unconditional Attribute Ownership Divestiture service, the Unpublish Object Class Attributes service, or as a result of the owning federate resigning, the user-supplied tag that shall be present in the Request Attribute Ownership Assumption † service invocation shall be empty.
[New in Release 2]

Service 7.2: Unconditional Attribute Ownership Divestiture

Interpretation 1

The following text is added to the introductory text of this service description,

“For each instance attribute that becomes unowned as a result of invocation of this service, if no joined federates are in either the “Acquiring” or “Willing to Acquire” state with respect to the specified instance attribute, the RTI shall try to identify other joined federates that are willing to own the instance attribute. If any joined federate is in either the “Acquiring” or “Willing to Acquire” state with respect to the specified instance attribute, the RTI may try to identify other joined federates that are willing to own the instance attribute. The mechanism that the RTI shall use to try to identify other joined federates that are willing to own the instance attribute is invocation of the Request Attribute Ownership Assumption † service at other joined federates (federates other than the divesting federate) that are both eligible to own the instance attribute and not in either the “Acquiring” or “Willing to Acquire” state with respect to the specified instance attribute. As long as the instance attribute remains unowned, the RTI shall try to identify joined federates (other than the divesting federate) that are willing to own the instance attribute; but once the instance attribute becomes owned, the RTI should not invoke the Request Attribute Ownership Assumption † service at any additional federates.”

Rationale: The Unconditional Attribute Ownership Divestiture service description does not explain or even mention the mechanism by which the RTI shall try to find an owner for unowned instance attributes that become unowned as the result of the invocation of the Unconditional Attribute Ownership Divestiture service. The text in this interpretation explains this mechanism. If there are no federates that are trying to acquire an unowned instance attribute, then the RTI shall use the Request Attribute Ownership Assumption † service as the mechanism for offering ownership of the unowned instance attribute to federates that are eligible to own it. If there is one or more federate that is trying to acquire an unowned instance attribute, then the RTI may either give ownership of the instance attribute to one of the federates that are trying to acquire it without offering ownership of it to other eligible federates, or it may use the Request Attribute Ownership Assumption † service to offer ownership of the unowned instance attribute to eligible federates before granting ownership of the attribute to a federate that expresses an interest in acquiring it. If the instance attribute becomes owned before the RTI has invoked the Request Attribute Ownership Assumption † service at one or more federates, there is no need for the RTI to invoke the Request Attribute Ownership Assumption † service at those federates. [New in Release 2]

Service 7.3: Negotiated Attribute Ownership Divestiture
Interpretation 1

The following text shall be added to the introductory paragraphs for this service,

“If no joined federates are in either the “Acquiring” or “Willing to Acquire” state with respect to the specified instance attribute, the RTI shall try to identify other joined federates that are willing to own the instance attribute. If any joined federate is in either the “Acquiring” or “Willing to Acquire” state with respect to the specified instance attribute, the RTI may try to identify other joined federates that are willing to own the instance attribute. The mechanism that the RTI shall use to try to identify other joined federates that are willing to own the instance attribute is invocation of the Request Attribute Ownership Assumption † service at joined federates that are both eligible to own the instance attribute and not in either the “Acquiring” or “Willing to Acquire” state with respect to the specified instance attribute.”

Rationale: This makes clear the mechanism that the RTI shall use to try to find federates that are willing to accept ownership of the instance attributes that the owning federate is trying to divest. For each instance attribute that is trying to be divested, if there are no federates that are trying to acquire that instance attribute, then the RTI shall use the Request Attribute Ownership Assumption † service as the mechanism for offering ownership of that instance attribute to federates that are eligible to own it. If there is one or more federate that is already trying to acquire that instance attribute, then the RTI may simply invoke the Request Divestiture Confirmation † service at the divesting federate to inform it that a federate that is willing to accept ownership of the instance attribute has been located. It is also acceptable in this situation for the RTI to use the Request Attribute Ownership Assumption † service to offer ownership of that instance attribute to other eligible federates (ones that are not already trying to acquire it) before invoking the Request Divestiture Confirmation † service at the divesting federate to inform it that a federate that is willing to accept ownership of the instance attribute has been located. [New in Release 2]

Interpretation 2

The fifth sentence in the Negotiated Attribute Ownership Divestiture service description reads:

"The invoking joined federate shall continue its update responsibility for the specified instance attributes until it divests ownership via the Confirm Divestiture service."

This sentence is changed to read,

"The invoking joined federate shall continue its update responsibility for the specified instance attributes until it divests ownership."

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation.

The invoking joined federate needs to continue its update responsibility for all instance attributes that it owns for as long as it owns them and until it divests them. The manner in which it divests them is irrelevant. By including the words “via the Confirm Divestiture service” at the end of the above sentence, the text as it currently appears in the standard implies that if the federate were to divest ownership by some other means, such as unpublishing, invoking the Unconditional Attribute Ownership Divestiture service, or invoking the Attribute Ownership Divestiture If Wanted service, then the federate would still continue its update responsibility for the instance attributes, even though the federate would no longer be the owner of the instance attributes. This implication is incorrect and contradicts other portions of the specification, which prevent a federate from updating an instance attribute if it is not the owner of that instance attribute. Removing the phrase “via the Confirm Divestiture Service” eliminates the incorrect implication. [New in Release 2]

Service 7.4: Request Attribute Ownership Assumption †
Interpretation 1

The following additional pre-condition is added to this service,

"The joined federate is not in either the "Acquiring" or the "Willing to Acquire" state for this instance attribute."

Rationale: This additional pre-condition is already a requirement as expressed by the guard on the Request Attribute Ownership Assumption transition in the statechart in Figure 15. [New in Release 2]

Service 7.6: Confirm Divestiture

Interpretation 1

The following additional pre-condition is added to this service:

“There is at least one federate in the federation that is in either the "Acquisition Pending” or the "Willing to Acquire" state with respect to the specified instance attribute.”

The following additional exception is added to this service:

“There is no joined federate that has an acquisition pending or that is willing to acquire the instance attribute.”

The following text is added to the introductory section of this service description,

“If a federate invokes the Confirm Divestiture service and, as a result, an exception is thrown indicating that there is no joined federate that has an acquisition pending or that is willing to acquire the instance attribute, then that federate shall transition from the Completing Divestiture state with regard to that instance attribute into the Waiting for a New Owner to be Found state with regard to that instance attribute.”

Rationale: If there are no federates in the federation execution that are in the

"Acquisition Pending" or "Willing to Acquire" state with respect to the specified instance attribute, the federate that owns the instance attribute shall be prohibited from invoking the Confirm Divestiture service for that instance attribute. If the owning federate were to be allowed to invoke the Confirm Divestiture service under these circumstances, this would result in the instance attribute becoming unowned by all federates, which shall never be allowed to happen as a result of a negotiated divestiture. Therefore, the owning federate shall be prevented from invoking the Confirm Divestiture service under these circumstances. [New in Release 2]

Service 7.7: Attribute Ownership Acquisition Notification †
Interpretation 1

The beginning of post-condition (b) of this service reads:

“ b) The joined federate may stop publishing the corresponding class attributes at the known class of the specified object instance if it does not own any corresponding instance attributes…”.

This text is changed to read (changes in boldface),

"b) The joined federate may stop publishing the corresponding class attributes at the known class of the specified object instance if there are no corresponding instance attributes…".

Rationale: Post-condition (b) of this service incorrectly implies that a federate could invoke the Attribute Ownership Acquisition service or the Attribute Ownership Acquisition If Available service on an instance attribute that the federate already owns. This textual modification is needed to correct this misleading implication. [New in Release 2]
Service 7.8: Attribute Ownership Acquisition

Interpretation 1

The following text is added to the introductory text for this service description,

“If a federate invokes the Attribute Ownership Acquisition service for an instance attribute that is already in the “Acquisition Pending” state, that instance attribute's state shall remain unchanged.

 That is, if a federate invokes the Attribute Ownership Acquisition service for an instance attribute for which the federate is in the “Acquiring” state, the federate shall continue to be in the “Acquiring” state with respect to that instance attribute and the federate that owns the instance attribute shall not receive a corresponding Request Attribute Ownership Release † callback. If there are additional instance attributes in the attribute set that is an argument to the Attribute Ownership Acquisition service, the federate shall enter the “Acquiring” state with respect to those instance attributes, assuming that they meet all of the pre-conditions of the Attribute Ownership Acquisition service and that the federate is not already in the “Acquiring” or the “Trying to Cancel Acquisition” state with respect to those instance attributes; and the federate that owns those instance attributes shall receive a corresponding Request Attribute Ownership Release † callback for those attributes, if appropriate.

Likewise, if a federate invokes the Attribute Ownership Acquisition service for an instance attribute for which the federate is in the “Trying to Cancel Acquisition” state, the federate shall continue to be in the “Trying to Cancel Acquisition” state with respect to that instance attribute and the federate that owns the instance attribute shall not receive a corresponding Request Attribute Ownership Release † callback. If there are additional instance attributes in the attribute set that is an argument to the Attribute Ownership Acquisition service, the federate shall enter the “Acquiring” state with respect to those instance attributes, assuming that they meet all of the pre-conditions of the Attribute Ownership Acquisition service and that the federate is not already in the “Acquiring” or the “Trying to Cancel Acquisition” state with respect to those instance attributes; and the federate that owns those instance attributes shall receive a corresponding Request Attribute Ownership Release † callback for those attributes, if appropriate.”

Rationale: This interpretation is needed to clarify expected behavior in a situation that is not discussed in the standard. [New in Release 2]

Interpretation 2

The second sentence of the introductory text of the Attribute Ownership Acquisition service reads,

"If a specified instance attribute is owned by another joined federate, the RTI shall invoke the Request Attribute Ownership Release † service for that instance attribute at the owning joined federate."

This sentence is changed to read,

"If a specified instance attribute is owned by another joined federate, and that owning federate is in the "Not Divesting" state with respect to the instance attribute, the RTI shall invoke the Request Attribute Ownership Release † service for that instance attribute at the owning joined federate. If a specified instance attribute is owned by another joined federate, and that owning federate is in the "Waiting for a New Owner to be Found" state with respect to the instance attribute, the RTI shall not invoke the Request Attribute Ownership Release † service for that instance attribute at the owning joined federate, but it shall invoke the Request Divestiture Confirmation † service for that instance attribute at the owning joined federate."

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation.

The text as originally written implies that if an owning federate is in the "Waiting for a New Owner to be Found" state and another federate invokes the Attribute Ownership Acquisition service, the owning federate will receive both a Request Attribute Ownership Release † and a Request Divestiture Confirmation † callback. Furthermore, a potentially large number of eligible federates could invoke the Attribute Ownership Acquisition service. If many federates invoke the Attribute Ownership Acquisition service, the owning federate will receive a corresponding large number of Request Attribute Ownership Release † callbacks while in the “Completing Divestiture” state, and these Request Attribute Ownership Release † callbacks are useless. The expectation that the owning federate would receive both the Request Divestiture Confirmation † callback and numerous useless Request Attribute Ownership Release † callbacks is non-sensical. It requires additional processing by both the RTI and the federate without providing any added value. Furthermore, the standard already prohibits the mirror image of this situation, which involves the question of whether a federate that is already in the “Willing to Acquire” or “Acquisition Pending” state shall receive equally useless invocations of the Request Attribute Ownership Assumption † callback. Therefore, in order for the “Owned” state of ownership management to be consistent with the “Unowned” state of ownership management, and to eliminate unnecessary inefficiency, the text shall be changed as described above. This interpretation is also consistent with the way the Request Attribute Ownership Release service worked in the HLA 1.3 specification, because according to that specification, an owning federate could only receive a Request Attribute Ownership Release † callback if it were in the “Not Divesting” state.

It has been suggested that one benefit of having an owning federate that is in either the “Waiting for a New Owner to be Found” state or the “Completing Divestiture” state continue to receive invocations of the Requests Attribute Ownership Release † service is that this callback includes a user-supplied tag, that this user-supplied tag could be used to convey information from federates that are requesting ownership to the federate that owns the instance attribute, and that the owning federate could then use this information to determine whether or not it wants to invoke the Confirm Divestiture service to complete the divestiture. However, as the standard is now written, there is no way for an owning federate to control to which requesting federate the attribute will be given once it is divested. Therefore, the benefit of conveying the user-supplied tags was not considered sufficient to warrant having the owning federate receive Request Divestiture Confirmation callbacks once it has indicated a willingness to divest.

There is no way to guarantee targeted divestiture, but if a federation execution wants to attempt to perform a directed divestiture, this can be accomplished with other existing ownership management mechanisms. Specifically, the owning federate could put information in the user-supplied tag of the Negotiated Attribute Ownership Divestiture service indicating to which federate(s) it is inclined to transfer ownership. Federates that are eligible to own the instance attribute would then receive this user-supplied tag information in the corresponding Request Attribute Ownership Assumption † service invocation that they will receive. Only those federates indicated by the user-supplied tag would then invoke the Attribute Ownership Acquisition or Attribute Ownership Acquisition If Available service. [New in Release 2]
Service 7.9: Attribute Ownership Acquisition If Available

Interpretation 1

The following text is added to the introductory text for this service description,

“If a federate invokes the Attribute Ownership Acquisition If Available service for an instance attribute that is already in the “Willing to Acquire” state, that instance attribute's state shall remain unchanged.

 That is, if a federate invokes the Attribute Ownership Acquisition If Available service for an instance attribute for which the federate is in the “Willing to Acquire” state, that instance attribute shall continue to be in the “Willing to Acquire” state. If there are additional instance attributes in the attribute set that is an argument to the Attribute Ownership Acquisition If Available service, the federate shall enter the “Willing to Acquire” state with respect to those instance attributes, assuming that they meet all of the pre-conditions of the Attribute Ownership Acquisition If Available service and that the federate is not already in the “Willing To Acquire” state.”

Rationale: This interpretation is needed to clarify expected behavior in a situation that is not discussed in the standard. [New in Release 2]

Interpretation 2

The last sentence of the introductory text of the Attribute Ownership Acquisition If Available service reads,

"For each of the specified instance attributes, the joined federate shall receive either a corresponding Attribute Ownership Acquisition Notification † service invocation or a corresponding Attribute Ownership Unavailable † service invocation."

This text is changed to read (changes in boldface),

"For each of the specified instance attributes, the joined federate may receive only a corresponding Attribute Ownership Acquisition Notification † service invocation or a corresponding Attribute Ownership Unavailable † service invocation, but not both."

Note that for consistency, this means that the third paragraph of clause 7.1.2.2 also needs to be changed. It reads,

“(If the instance attribute is unowned by all joined federates or in the process of being divested by its owner, the Attribute Ownership Acquisition Notification † service shall be invoked. Otherwise, the Attribute Ownership Unavailable † service shall be invoked.)”

This sentence is changed to read,

“If the instance attribute is unowned by all joined federates (and no other federate is attempting to acquire it), the Attribute Ownership Acquisition Notification † service shall be invoked. If the federate is in the “Not Divesting” state with respect to the instance attribute, the Attribute Ownership Unavailable † service shall be invoked. Otherwise, either the Attribute Ownership Acquisition Notification † service or the Attribute Ownership Unavailable † service may be invoked, depending on what service, if any, the owning federate invokes.”

Rationale: Because a federate that owns an instance attribute and is in the process of divesting it has the option of staying in the "Completing Divestiture" state indefinitely, it is not the case that a federate that invokes the Attribute Ownership Acquisition If Available service will necessarily receive either an Attribute Ownership Acquisition Notification † service invocation or a corresponding Attribute Ownership Unavailable † service invocation. If the owning federate stays in the "Completing Divestiture" state indefinitely, the federate that invoked the Attribute Ownership Acquisition If Available service will receive neither a corresponding Attribute Ownership Acquisition Notification † service invocation nor a corresponding Attribute Ownership Unavailable † service invocation. [New in Release 2]
Service 7.10: Attribute Ownership Unavailable †
Interpretation 1

Post-condition (b) of this service reads,

“The joined federate may stop publishing the corresponding class attributes at the known class of the specified object instance.”

Post-condition b) is changed to read (changes in boldface),

“The joined federate may stop publishing the corresponding class attributes at the known class of the specified object instance if there are no corresponding instance attributes for which the joined federate has either:

 1. invoked the Attribute Ownership Acquisition service, and has not yet received a corresponding invocation of either the Confirm Attribute Ownership Acquisition Cancellation † service or the Attribute Ownership Acquisition Notification † service, or

2. invoked the Attribute Ownership Acquisition If Available service, and has not yet received a corresponding invocation of either the Attribute Ownership Unavailable † service or the Attribute Ownership Acquisition Notification † service, or

3. invoked the Attribute Ownership Acquisition If Available service and has subsequently invoked the Attribute Ownership Acquisition service [after which condition 1) applies].”

Rationale: When a federate receives the Attribute Ownership Unavailable† callback for an instance attribute, it is no longer in the "Willing to Acquire" state with respect to that instance attribute. Therefore, it is permissible for the federate to stop publishing that instance attribute's corresponding class attribute at the known class of the object instance, providing that there are no other corresponding instance attributes at that same known class that the federate is either "Willing to Acquire", or for which the federate has an "Acquisition Pending". If there is at least one other such instance attribute that the federate is "Willing to Acquire" or for which the federate has an "Acquisition Pending", then the federate must be prohibited from unpublishing the corresponding class attribute of that instance attribute at the known class of the object instance. Stipulations 1, 2, and 3 above ensure that there are no other such instance attributes that the federate is "Willing to Acquire" or for which the federate has an "Acquisition Pending". [New in Release 2]
Service 7.15: Confirm Attribute Ownership Acquisition Cancellation †
Interpretation 1

Post-condition (b) of this service reads,

“The joined federate may stop publishing the corresponding class attributes at the known class of the specified object instance.”

Post-condition (b) is changed to read (changes in boldface),

“The joined federate may stop publishing the corresponding class attributes at the known class of the specified object instance if there are no corresponding instance attributes for which the joined federate has either:

1. invoked the Attribute Ownership Acquisition service, and has not yet received a corresponding invocation of either the Confirm Attribute Ownership Acquisition Cancellation † service or the Attribute Ownership Acquisition Notification † service, or

2. invoked the Attribute Ownership Acquisition If Available service, and has not yet received a corresponding invocation of either the Attribute Ownership Unavailable † service or the Attribute Ownership Acquisition Notification † service, or

3. invoked the Attribute Ownership Acquisition If Available service and has subsequently invoked the Attribute Ownership Acquisition service [after which condition 1) applies].”

Rationale: The rationale for this interpretation is the same as for service 7.10 above. [New in Release 2]
6. Time Management Interpretations
Figure 16: Temporal State statechart

Interpretation 1

Two of the service names on the transition from the "Idle" to the "Time Advancing" state are not correct. "Next Event Request" is changed to "Next Message Request" and "Next Event Request Available" is changed to "Next Message Request Available".

The label from the Asynchronous Delivery Enabled state to the Asynchronous Delivery Disabled state has a typographical error. It is changed to “Disable Asynchronous Delivery” instead of “Disable Asynchronously Delivery”.

Rationale: These changes correct typographical errors. [New in Release 2]

Service 8.12 Flush Queue Request

Interpretation 1

Lines 4-8 of the introductory text of this service read,

“The RTI shall advance the joined federate's logical time to the smallest of the following:

· the specified logical time

· the joined federate's GALT value

· the smallest time stamp of all TSO messages delivered by the RTI in response to this invocation of the Flush Queue Request service.”

Lines 9-11 of the introductory text of this service read,

“If the joined federate will not receive any additional TSO messages with time stamps less than the specified logical time, the joined federate shall be advanced to the specified logical time. Otherwise, the RTI shall advance the joined federate’s logical time as far as possible (i.e., to the joined federate’s GALT).”

Lines 9-11 are deleted, so that lines 4-11 now read,

“The RTI shall advance the joined federate's logical time to the smallest of the following:

· the specified logical time

· the joined federate's GALT value

· the smallest time stamp of all TSO messages delivered by the RTI in response to this invocation of the Flush Queue Request service.”

Rationale: Lines 4-8 and lines 9-11 of the introductory text of this service conflict with each other. Deleting lines 9-11 corrects this inconsistency. [New in Release 2]

7. Data Distribution Management Interpretations
Section 9.1: DDM Overview

Interpretation 1

 Item (a) of clause 9.1.3.1 reads,

“a) A region specification may be created using the Create Region service. Such a region specification may be deleted using the Delete Region service. Invoking the Commit Region Modifications service for a region specification shall notify the RTI about modifications to that region specification.”

Item (a) is deleted and replaced with the following,

“a) The only way that a region specification can be created is by a federate successfully invoking the following services, in order:

1. Invoke the Create Region service (DDM Service 9.2) to create a region with a specific set of dimensions;

2. Invoke the Set Range Bounds service (Support Service 10.32) for every dimension that was explicitly specified when that region was created, to set the lower and upper bounds of the range of that dimension for that region;

3. Invoke Commit Region Modifications (DDM Service 9.3) to inform the RTI about the changes to the ranges of the dimensions specified in the preceding series of Set Range Bounds service invocations.

A region template is created when a federate invokes the Create Region service. The region designator argument that is returned as a result of the Create Region service is a designator of a region template only. It is not the designator of a region specification, because the range bounds have not yet been set for all of the dimensions of the region template followed by a successful invocation of the Commit Region Modifications service for this region. Only after the Set Range Bounds service has been successfully invoked for every dimension in the region, followed by a successful invocation of the Commit Region Modifications service, is that region designator the designator of a region specification.

When a federate invokes the Register Object Instance With Region, Associate Regions For Updates, Subscribe Object Class Attributes With Regions, Subscribe Interaction Class With Regions, Send Interaction With Regions, or Request Attribute Value Update With Regions service with that region specification designator as an argument, one or more region realizations is created. These region realizations, however, do not have designators.”

Rationale: According to clause 9.1.1 (c), "A region specification shall be a set of ranges." Whereas according to clause 9.1.3.1 (a), "A region specification may be created using the Create Region service." These two statements are contradictory, because the Create Region service only determines what dimensions will be in a region, not the ranges of those dimensions. Therefore, Item (a) of 9.1.3.1 required correction. [New in Release 2]

Interpretation 2

Item (b) of 9.1.3.1 reads,

“The specified dimensions of the region specification shall be the dimensions that are explicitly provided when the region specification is created or modified.”

Item (b) is changed to read (changes in boldface),

“The specified dimensions of the region specification shall be the dimensions that are explicitly provided when the Create Region service is invoked to create that region specification. Invocation of neither the Set Range Bounds service nor the Commit Region Modifications service for a particular region has any effect on what the specified dimensions of that region specification are.”

Rationale: Modifying a region does not determine the specified dimensions of a region specification. [New in Release 2]

Interpretation 3

Item (d) of clause 9.1.3.1 reads,

“d) Region realizations can be created from region specifications via the Register Object Instance with Regions, Associate Regions for Updates, Subscribe Object Class Attributes with Regions, Subscribe Interaction Class with Regions, Send Interaction with Regions, Request Attribute Value Update with Regions, or Commit Region Modifications services.”

Item (d) is changed to read,

“d) Region realizations can be created from region specifications via the Register Object Instance with Regions, Associate Regions for Updates, Subscribe Object Class Attributes with Regions, Subscribe Interaction Class with Regions, Send Interaction with Regions, or Request Attribute Value Update with Regions, services.

The Commit Region Modifications service can only either:

· - create a region specification from a region template, or

· - modify the range bounds of an existing region specification and thereby also modify the range bounds of all existing region realizations that are derived from that region specification.”

Rationale: Contrary to what is said in clause 9.1.3.1 (d), the Commit Region Modifications service cannot be used to create a region realization from a region specification. [New in Release 2]

Interpretation 4

The following additional text is added to clause 9.1.3.1,

“If a federate invokes the Create Region service but does not subsequently successfully invoke the Set Range Bounds service for every dimension in the region, followed by a successful invocation of the Commit Region Modifications service for the region, then the federate has not created a region specification. In particular:

· If a federate invokes the Create Region service and then does not invoke the Set Range Bounds service or invokes the Set Range Bounds service for only some, but not all, of the dimensions that were specified when the region was created, followed by an invocation of the Commit Region Modifications service for that region, the Commit Region Modifications service shall throw the "Invalid region" exception, because each region designator that is passed to the Commit Region Modifications service is required to have had the Set Range Bounds service invoked at least once for all of its dimensions. The effects of the Set Range Bounds service invocations that were made, if any, are still pending. They will take effect if and when the Set Range Bounds service has been invoked at least once for all of the dimensions of the region, followed by the invocation of the Commit Region Modifications service for that region.

· If a federate invokes the Create Region service, followed by at least one Set Range Bounds service invocation for every one of the dimensions that were specified when the region was created, but does not invoke the Commit Region Modifications service, the region continues to be only a region template, but not a region specification. The effects of the Set Range Bounds service invocations are still pending and will take effect if and when the Commit Region Modifications service is successfully invoked for that region.

The effects of invocation of the Set Range Bounds service for a given region (template or specification) will remain pending until the Commit Region Modifications service is subsequently invoked for that region. If a federate invokes the Set Range Bounds service repeatedly for a given dimension of a given region before invoking the Commit Region Modifications service for that region, the range values provided in the most recent invocation of the Set Range Bounds service will become the range values for that dimension of that region specification.”

Rationale: If the Set Range Bounds service is not called for a given dimension of a region, or the Commit Region Modifications service is not called after the Set Range Bounds service has been invoked for every dimension of that region, then the region will contain one or more dimensions that do not have ranges set, and there will be no way to use this region meaningfully. If some of a region's dimensions do not have ranges, then there is no way to determine whether or not the region overlaps with other regions. In summary, although the creation of a region specification is accomplished using a sequence of service calls, all of these service calls must be invoked successfully, in sequence, in order to successfully create a region specification. [New in Release 2]
Section 9.1.2: Default Ranges

Interpretation 1

The first part of item (d) of 9.1.2 reads,

"Each dimension in the FDD shall have either a default range specified in terms of [0, the dimension's upper bound) or shall have…".

The first part of item (d) of 9.1.2 is changed to read (changes in boldface),

"Each dimension in the FDD shall have either a default range specified in terms of the bounds [0, the dimension's upper bound) or shall have…".

Rationale: It is not necessary that the default range cover the entire dimension. [New in Release 2]

DDM: "Invalid Region" exceptions

Interpretation 1

The following additional text is added to clause 9.1.1,

“Some DDM services require that the region designator used as an argument be the designator of a region specification, whereas other DDM services require that the region designator used as an argument be the designator of either a region template or a region specification. One DDM service, Commit Region Modifications, requires that the region designator used as an argument be that of either a region template that has had the Set Range Bounds service called at least once for all of its dimensions, or a region specification. If a DDM or Support service is invoked with a region designator argument that is not of the variety it is expecting, the service shall throw the "Invalid region" exception. Hence, the circumstances that shall cause the "Invalid region" exception to be thrown will vary from service to service, depending on the type of region entity (template, specification, or template with all range bounds set) for which the service is expected to receive a designator.

For all services that can be used to create a region realization from a region specification, the region designator argument shall be the designator of a region specification. Specifically, the following services, which result in the creation of region realizations from region specifications, require that the region designator argument be the designator of a region specification: Register Object Instance With Regions, Associate Regions For Updates, Subscribe Object Class Attributes With Regions, Subscribe Interaction Class With Regions, Send Interaction With Regions, and Request Attribute Value Update With Regions.

The following services also require that the region designator argument be the designator of a region specification: Unassociate Regions for Updates, Unsubscribe Object Class Attributes With Regions, and Unsubscribe Interaction Class With Regions.
The region designator argument for the Delete Region service shall be the designator of either a region template or a region specification.

There are also three Support Services that take a region designator as argument:

· The region designator argument for the Get Range Bounds service shall be the designator of either a region specification or a region realization.

· The region designator argument for the Get Dimension Handle Set service shall be the designator of a region template, a region specification, or a region realization.

· The region designator argument for the Set Range Bounds service shall be the designator of either a region template or a region specification.”
 Rationale: This text is needed to supply necessary information that had been omitted. [New in Release 2]
Section 9.1.7: Convey Region Designator Sets Switch
Interpretation 1

The first four paragraphs of clause 9.1.7, Convey region designator sets switch, read,

“The federation execution-wide Convey Region Designator Sets Switch indicates whether the RTI should provide the optional Set of Sent Region Designators argument with invocations of Reflect Attribute Values † and Receive Interaction † services.

The initial setting for this switch shall come from the FDD at federation execution creation time. This switch setting shall be modifiable during a federation execution via the HLAmanager.HLAfederation.HLAadjust.HLAsetSwitches MOM interaction.

Whenever this switch is Enabled, the optional Set of Sent Region Designators (region realizations) argument shall be provided (as appropriate) with all Reflect Attribute Values † and Receive Interaction † service invocations at all joined federates.

Whenever this switch is Enabled, the optional Set of Sent Region Designators argument shall be provided (as appropriate) with all Reflect Attribute Values † and Receive Interaction † service invocations at all joined federates. For Reflect Attribute Values †, if the specified instance attributes have available dimensions, the Set of Sent Region Designators argument shall contain the respective update region set. For Receive Interaction †, if the specified interaction has available dimensions, the Set of Sent Region Designators argument shall contain the respective update region set.”

These paragraphs of 9.1.7 are changed to read (changes in boldface),

“Each federate’s Convey Region Designator Sets Switch indicates whether the RTI shall provide the optional Set of Sent Region Designators argument with invocations of Reflect Attribute Values † and Receive Interaction † services at the joined federate.

The federation-wide initial setting for this switch shall come from the FDD at federation execution creation time. This switch setting shall be modifiable during a federation execution via the HLAmanager.HLAfederate.HLAadjust.HLAsetSwitches MOM interaction.

Whenever this switch is Enabled at a joined federate, the optional Set of Sent Region Designators (region realizations) argument shall be provided (as appropriate) with all Reflect Attribute Values † and Receive Interaction † service invocations at that joined federate. For Reflect Attribute Values †, if the specified instance attributes have available dimensions, the Set of Sent Region Designators argument shall contain the respective update region set. For Receive Interaction †, if the specified interaction has available dimensions, the Set of Sent Region Designators argument shall contain the respective update region set.”

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation because it enables each federate to control whether or not it will receive the Set of Sent Region Designators argument independently of whether other federates in the federation execution receive it. This enables federates that do not use or care about DDM to shield themselves from receiving callbacks containing the Set of Sent Region Designators argument while at the same time enabling those federates that do want to receive Sets of Sent Region Designators, such as logging federates, to do so. [New in Release 2]

Interpretation 2

The following text is added to clause 9.1.7,

“The Set of Sent Region Designators conveyed is not a set of designators of region specifications or a set of designators of region realizations. It is, instead, a set of designators of copies of the update region realizations. The range values of each of the dimensions in each of these region realization copies are the same as the range values of each of the dimensions of the corresponding update region realization that were in effect when the region overlap calculation was performed. Each designator is guaranteed to refer to a particular region realization copy, and the copy is guaranteed to remain intact, until the Reflect Attribute Values † service or the Receive Interaction † service invocation at the receiving/reflecting federate completes. No change to the range values of the region realization from which the copy was made will cause a change to the range values of the copy as long as the Reflect Attribute Values † service or the Receive Interaction † service invocation is still in progress.”

Consider the following example:

Assume the following FDD information:

Dimension d1 [0, 1000) default range [1, 100)

Dimension d2 [0, 1000) default range [1, 100)

Dimension d3 [0, 1000) default range [1, 100)

Dimension d4 [0, 1000) default range [1, 100)

Object Class C

Attribute X dimensions d1, d3

Attribute Y dimensions d1, d4

Attribute Z dimensions d2

Now assume the following service invocations:

Create Region ({d1}) return (designator R)

Create Region ({d2}) return (designator G)

At this point, R and G are the designators of region templates only.

Set Range Bounds(R, d1, 2, 45)

Commit Region Modifications (R)

Set Range Bounds (G, d2, 5, 15)

Commit Region Modifications (G)

At this point, R and G are the designators of region specifications.

Register Object Instance(object class C, “object1”)

Associate Regions For Updates (object1, ({X, Y}, {R}))

After the above Associate Regions For Updates (object1, ({X, Y}, {R})) service invocation, R is still the designator of a region specification; however, as a result of the Associate Regions For Updates (object1, ({X, Y}, {R})) service invocation, two region realizations were created: one associated with X, and one associated with Y. The federate that created the region specification R, however, has no designator that refers to either of these region realizations uniquely. The region realization that is associated with X has specified dimension d1 and unspecified dimension d3. The region realization that is associated with Y has specified dimension d1 and unspecified dimension d4.

Associate Regions For Updates (object1, ({Z}, {G}))

Use a MOM interaction to enable the Convey Region Designator Sets Switch.

Update Attribute Values (object1, {(X, 44), (Y, 53), (Z, 66)}, “user tag”)

At this point, all federates that are subscribed to X, Y and Z at the appropriate object class will receive three separate reflects: one that includes only an attribute/value pair for X, one that includes only an attribute/value pair for Y, and another that includes only an attribute/value pair for Z. Note that although the region realization associated with X and the region realization associated with Y are derived from the same region specification (region specification R), the region realization associated with X differs from the region realization associated with Y because the the unspecified dimensions of each of the region realizations differ. This passelization of a single update into three different reflects is required by the fact that different region realizations were associated with X,Y, and Z. The reflect for X will contain a Set of Sent Region Designators consisting of one designator, R1, which has range values for dimensions d1 [2, 45) and d3 [1,100); the reflect for Y will contain a Set of Sent Region Designators consisting of one designator, R11, which has range values for dimensions d1 [2, 45) and d4 [1,100); and the reflect for Z will contain a Set of Sent Region Designators consisting of one designator, G1, which has range values for only dimension d2 [5, 15).

If the reflecting federate were to invoke Get Dimension Handle Set (R1) while the Reflect Attribute Values service were still in progress and before it is allowed to complete, it would get back a response of {d1, d3}, because R1 is a copy of a region realization consisting of specified dimension d1 and unspecified dimension d3. If the reflecting federate were to invoke Get Range Bounds (R1, d1) it would get return values of: lower bound 2; upper bound 45. If the reflecting federate were to invoke Get Range Bounds (R1, d3) it would get return values of: lower bound 1; upper bound 100. However, once the Reflect Attribute Values service invocation completes at the reflecting federate, the reflecting federate is no longer guaranteed that the values returned by Get Range Bounds (R1, d1) will still be 2 and 45.

For the second part of this example, suppose that the updating federate were to invoke the following:

 Update Attribute Values (object1, {(X, 100)}, “user tag”).

The reflecting federate would receive a reflect with an attribute/value pair for (X, 100) in it, and a conveyed region set consisting of one designator, R2. R2 may or may not be equal to R1. That is an implementation detail.

If the reflecting federate were to invoke Get Range Bounds (R2, d1) before the Reflect Attribute Values service invocation were allowed to complete, it would get return values of: lower bound 2; upper bound 45.

Suppose the updating federate were to invoke Set Range Bounds(R, d1, 10, 20), followed by Commit Region Modifications (R) while the previous Reflect Attribute Values service invocation is still in progress at the reflecting federate.

If the reflecting federate were to invoke Get Range Bounds (R2, d1) it would still get return values of: lower bound 2; upper bound 45, because the Reflect Attribute Values service invocation that contains the region realization copy with these range values has not yet completed.

Suppose the updating federate were to invoke Update Attribute Values (object1, {(X, 200)}, “user tag”) after the previous Reflect Attribute Values service invocation had completed.

The reflecting federate would receive a reflect with an attribute/value pair for (X, 200) in it, and a conveyed region set consisting of one designator, R3. (R3 may or may not be equal to R1 or R2; that is an implementation detail.)
If the reflecting federate were to invoke Get Range Bounds (R3, d1) while the reflect is in progress, it would now get new return values of: lower bound 10; upper bound 20, because the updating federate had modified the corresponding region specification before invoking the Update Attribute Values service that resulted in the current reflect.

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation.

The conveyed region sets must contain designators of copies of region realizations, rather than designators of region realizations themselves, because if the designators of the actual region realizations were to be conveyed, this would result in an undesirable race condition. If the designators were of actual region realizations, for example, rather than of just copies of region realizations, then after a federate invokes an Update Attribute Values service or a Send Interaction with Regions service that results in a set of sent region designators being conveyed in the corresponding Reflect Attribute Values † service or Receive Interaction † service, there is a race that could occur between the federate that sent the update or interaction setting new range bounds and committing region modifications to a sent region, and the federate that received the reflect or interaction invoking the Get Dimension Handle Set and Get Range Bounds services to query all of the range bounds of the region realizations received.

According to post-condition (b) of the Commit Region Modifications service, when a region specification is modified, all update region realizations that are derived from that region specification are also modified. Therefore, considering the second part of the example above, suppose the sending federate updates the instance attributes and the reflecting federate receives region specification designator R2 in the Set of Sent Region Designators argument of the reflect, as discussed in the example. Then suppose that the updating federate modifies the region specification R. This means that all of the update region realizations that were derived from R (R2) also get modified. If the updating federate modifies R before the reflecting federate has a chance to use the Get Range Bounds service to determine what the range values of each dimension of R2 are, then the reflecting federate will never be able to determine what the range values of R2 were when the overlap calculation that resulted in the reflect with R2 in it was performed. A race condition would exist between the updating federate's attempt to modify the region specification and the reflecting federate's attempt to determine the range values of each dimension of the derived region realizations received.

Conveying designators of copies of these region realizations, instead of designators of region realizations themselves, eliminates this race condition. The reflecting federate is always guaranteed that if it queries the range bounds using a region designator conveyed in a reflect or received interaction while the reflect or receive interaction is still in progress, the range values of the region realization copy will be the values of the update region realization that were in effect at the time that the overlap calculation was done on the update region set and subscription region set that resulted in that reflect or received interaction. [New in Release 2]
Interpretation 3

Section 9.1.7, last sentence, reads,

“A joined federate shall use conveyed region sets only in the Get Range Bounds and Get Dimension Handle Set service invocations.”

This sentence is changed to read (changes in boldface),

“A joined federate shall use the region realization designators received in conveyed region sets only in the Get Range Bounds and Get Dimension Handle Set service invocations.”

Rationale: The Get Range Bounds and Get Dimension Handle Set services take region handles, not sets of region handles, as arguments. [New in Release 2]

Service 9.3 Commit Region Modifications

Interpretation 1

The following text is added to the introductory text for this service description,

“Each region designator that is passed to the Commit Region Modifications service is required to be the designator of either a region template that has had the Set Range Bounds service invoked at least once for all of its dimensions, or a region specification. If a federate invokes the Commit Region Modifications service with a region designator argument that is neither the designator of a region template that has had the Set Range Bounds service invoked at least once for all of its dimensions, nor the designator of a region specification, then the Commit Region Modifications service shall throw the "Invalid region" exception.”

Rationale: The purpose of the Commit Region Modifications service is to either create a region specification from a region template or modify an already-existing region specification and all derived region realizations. If not all dimensions of a region template have had their range bounds set, then no region specification can be created by the Commit Region Modifications service because a region specification, by definition, has range bounds set for each dimension in the region template. Therefore, invoking the Commit Region Modifications service in this situation is considered an error. [New in Release 2]
Service 9.4: Delete Region

Interpretation 1

The second sentence of this service description reads,

“A region in use for subscription or update should not be deleted.”

This sentence is changed to read (changes in boldface),

 “A region in use for subscription or update shall not be deleted.”

Rationale: Deletion of a region that is in use must not be carried out by the RTI, because the expected behavior of the RTI in such a situation is not well-defined. Pre-condition e, "The region is not in use for update or subscription", and exception c, "The region is in use for update or subscription", support the interpretation that deletions of regions that are in use shall not be allowed. [New in Release 2]
Service 9.5: Register Object Instance With Regions

Interpretation 1

The last paragraph of this service description reads,

“If the optional object instance name argument is supplied, that name shall have been successfully reserved as indicated by the Object Instance Name Reserved † service and shall be coadunated with the object instance. If the optional object instance name argument is not supplied, the RTI shall create one when needed (Get Object Instance Name service).”

This paragraph is changed to read (changes in boldface),

“If the optional object instance name argument is supplied, that name shall have been successfully reserved as indicated by the Object Instance Name Reserved † service and shall be coadunated with the object instance. If the optional object instance name argument is not supplied, the RTI shall create a federation execution-wide unique name and that name shall be coadunated with the object instance.”

Rationale: With regard to the behavior described in this paragraph, the Register Object Instance With Regions service shall behave identically to the Register Object Instance service, 6.4. That is, if the optional object instance name argument is not supplied when the Register Object Instance With Regions service is invoked, the RTI shall create a federation execution-wide unique name and that name shall be coadunated with the object instance. The registration of all object instances shall be treated consistently, whether they are registered with or without regions. All object instances shall have federation execution-wide unique names. [New in Release 2]
Interpretation 2

The following precondition is added to this service,

“All supplied region designators are designators of region specifications. If a region designator specified is not a designator of a region specification, the “Invalid region” exception shall be generated.”

Rationale: This service shall result in the creation of one or more region realizations. A region realization can only be derived from a region specification, not a region template, because all range bounds of the specified regions of the region realization must be set. If the designator of a region template, instead of a designator of a region specification, is used as an argument to this service, then this service could not result in the creation of a region realization because the range bounds of one or more of the dimensions in the region would not be set. [New in Release 2]
Service 9.6: Associate Regions For Updates

Interpretation 1

The second sentence of the third paragraph of this service description reads,

"This service shall add the specified regions to the set of associations of each specified instance attribute."

This sentence is changed to read,

“If an instance attribute is associated with the default region, then invocation of the Associate Regions For Updates service shall remove the association of that instance attribute with the default region and add the association of that instance attribute with the specified region. If an instance attribute is not associated with the default region, then invocation of the Associate Regions For Updates service shall add the specified regions to the set of associations of the specified instance attribute.”

Rationale: See 9.1.3.2 (a). If an instance attribute is associated with the default region, there is no value in also associating it with other regions, because the default region always overlaps with all other regions that have dimensions. An instance attribute shall only be associated with the default region if it is not associated with any other region. When an instance attribute is associated with another region, its association with the default region shall no longer exist. So, if an instance attribute is associated with the default region, associating that instance attribute with one or more other regions shall have the effect of removing the association of that instance attribute with the default region, because there is no way to explicitly remove the association of that instance attribute with the default region. [New in Release 2]
Interpretation 2

The following precondition is added to this service,

“All supplied region designators are designators of region specifications. If a region designator specified is not a designator of a region specification, the “Invalid region” exception shall be generated.”

Rationale: This service shall result in the creation of one or more region realizations. A region realization can only be derived from a region specification, not a region template, because all range bounds of the specified regions of the region realization must be set. If the designator of a region template, instead of a designator of a region specification, is used as an argument to this service, then this service could not result in the creation of a region realization because the range bounds of one or more of the dimensions in the region would not be set. [New in Release 2]
Service 9.7: Unassociate Regions For Updates

Interpretation 1

The second sentence in this service description reads,

“No changes shall be made to the association set if the specified regions are not in the set of associations of the specified instance attributes.”

This sentence is changed to read,

“If one or more of the specified regions is in the set of associations, then these regions shall be unassociated from the specified instance attributes; if any of the specified regions are not in the set of associations of the specified instance attributes, they shall be ignored.”

Rationale: This additional text clarifies expected behavior in a situation that is not currently addressed in the standard. [New in Release 2]

Interpretation 2

The following precondition is added to this service,

“All supplied region designators are designators of region specifications. If a region designator specified is not a designator of a region specification, the “Invalid region” exception shall be generated.”

Rationale: Only region specifications, not region templates, can be used as arguments to the Associate Regions For Updates service, so it would make no sense to use a region template as argument to the Unassociate Regions For Updates service. A region template cannot be associated for updates, so it therefore cannot be unassociated for updates either. [New in Release 2]
Service 9.8: Subscribe Object Class Attributes With Regions
Interpretation 1

The following text is added to the introductory text for this service description,

“The use of the optional passive subscription indicator shall act on the triple basis, which is as follows:

Each subscribed attribute of a class with region is subscribed either actively or passively (but not both actively and passively) at that given object class and with that particular region. Two different class attributes that are subscribed with regions at the same object class and with the same region may be subscribed differently from each other: one active and one passive, and a class attribute that is subscribed with regions at a given object class but with more than one region may be subscribed differently (either actively or passively) with each region. That is, the active/passive characteristic is a property of a subscription to a class attribute at a given object class with a given region.

Each (object class, class attribute, region) triple specified in a given invocation of the Subscribe Object Class Attributes With Regions service will take on the effect of the optional passive/active subscription indicator supplied (or not supplied) with that service invocation. Furthermore, if there is an existing (object class, class attribute, region) subscription that has the same object class, class attribute, and region value as those specified in the current invocation of the Subscribe Object Class Attributes With Regions service, this existing subscription will take on the effect of the optional active/passive subscription indicator supplied (or not supplied) with the current service invocation.

Invoking the Subscribe Object Class Attributes With Regions service with an (object class, class attribute, region set) triple such that the region set is empty shall not change the active/passive subscription nature of any of the (object class, class attribute, region) triples that are already subscribed. Each use of the Subscribe Object Class Attributes With Regions service shall add the specified regions to the set of subscriptions of the specified class attributes at that object class, if they are not already in this set; and may change the active/passive nature of existing subscriptions if they are.”

Rationale: This service description needed to be clarified regarding the intended use of the optional passive subscription indicator. As originally written, the text does not explain what it means for a subscription with region to be passive or active. That is, it is not clear whether the active/passive characteristic applies on a per-(object class, class attribute, region) triple basis, on a per-(object class, class attribute) pair basis, or on some other basis. The intent is for invocations of the Subscribe Object Class Attributes With Regions service for any given object class, class attribute, and region to be cumulative with respect to the set of subscribed regions of a given class attribute, but substitutive with respect to whether each (object class, class attribute, region) subscription is subscribed actively or passively. If the current invocation of the Subscribe Object Class Attributes With Regions service includes an (object class, class attribute, region) subscription that already exists, the property of active versus passive for that (object class, class attribute, region) subscription will be substituted according to the value (or absence) of the optional passive subscription indicator argument to the current invocation of the Subscribe Object Class Attributes With Regions service. [New in Release 2]
Interpretation 2

The following precondition is added to this service,

“All supplied region designators are designators of region specifications. If a region designator specified is not a designator of a region specification, the “Invalid region” exception shall be generated.”

Rationale: This service shall result in the creation of one or more region realizations. A region realization can only be derived from a region specification, not a region template, because all range bounds of the specified regions of the region realization must be set. If the designator of a region template, instead of a designator of a region specification, is used as an argument to this service, then this service could not result in the creation of a region realization because the range bounds of one or more of the dimensions in the region would not be set. [New in Release 2]
Service 9.9: Unsubscribe Object Class Attributes With Regions
Interpretation 1

The first sentence of this service description reads,

"The Unsubscribe Object Class Attributes With Regions service shall inform the RTI that it shall stop notifying the joined federate of object instance discoveries and attribute updates for instance attributes of the specified object class in the specified region."

This sentence is changed to read,

“The Unsubscribe Object Class Attributes With Regions service shall require the RTI to remove the specified region from the subscription region set of the specified class attribute at the specified object class, which is used to determine when the Discover Object Instance † service and the Reflect Attribute Values † service shall be invoked at this joined federate.”

Rationale: The purpose of the Unsubscribe Object Class Attributes With Regions service is to remove subscriptions with regions such that

· Those subscriptions will no longer be part of the calculation regarding whether or not the subscription region set for the class attribute at the candidate discovery class at the subscribing joined federate overlaps the update region set of the instance attribute at the owning federate (for purposes of determining whether the subscribing federate should discover the object instance), and

· Those subscriptions will no longer be part of the calculation regarding whether or not the subscription region set for the class attribute at the known class of the object instance at the subscribing joined federate overlaps the update region set of the instance attribute at the owning federate at the time of update (for purposes of determining whether the subscribing federate should receive a Reflect Attribute Values † callback when the instance attribute is updated).

Here is an example: Suppose that federate 1 has a given object class and class attribute subscribed with two different regions, R1 and R2. Suppose that federate 2 owns a corresponding instance attribute of an object instance that it has registered at the given class and that federate 2 has associated region R3 with that instance attribute for updates. Suppose also that region R3 overlaps region R1 and region R3 also overlaps region R2. If federate 1 invokes the Unsubscribe Object Class Attributes With Regions service for that object class, class attribute, and region R1, then federate 1 would still expect to reflect attribute updates for the instance attribute, because it is still subscribed to the corresponding class attribute with region R2. If federate 1 also invokes the Unsubscribe Object Class Attributes With Regions service for that object class, class attribute, and region R2, then federate 1 would not expect to reflect attribute value updates for the instance attribute. [New in Release 2]

Interpretation 2

The following precondition is added to this service,

“All supplied region designators are designators of region specifications. If a region designator specified is not a designator of a region specification, the “Invalid region” exception shall be generated.”

Rationale: Only region specifications, not region templates, can be used as arguments to the Subscribe Object Class Attributes With Regions service, so it would make no sense to use a region template as argument to the Unsubscribe Object Class Attributes With Regions service. A region template cannot be subscribed, so it therefore cannot be unsubscribed either. [New in Release 2]
Service 9.10: Subscribe Interaction Class With Regions
Interpretation 1

The following text is added to the introductory text for this service description,

“The use of the optional passive subscription indicator shall act as follows:

Each subscribed interaction class with regions shall be subscribed either actively or passively with a given region, but not both. Two different interaction classes that are subscribed at the same region may be subscribed differently from each other: one active and one passive, and the same interaction class that is subscribed with two different regions may be subscribed differently (either actively or passively) with each region. Each (interaction class, region) pair specified in a given invocation of the Subscribe Interaction Class With Regions service shall take on the effect of the optional active/passive subscription indicator supplied (or not supplied) with that service invocation. Furthermore, if there is an existing (interaction class, region) subscription that has the same interaction class and region values as those specified in the current invocation of the Subscribe Interaction Class With Regions service, it shall take on the effect of the optional passive/active subscription indicator supplied (or not supplied) with the service invocation.

Invoking the Subscribe Interaction Class With Regions service with an (interaction class, region set) pair such that the region set is empty shall not change the active/passive subscription nature of any of the (interaction class, region) pairs that are already subscribed. Each use of the Subscribe Interaction Class With Regions service shall add the specified regions to the set of subscriptions of the specified interaction class, if they are not already in this set; and may change the active/passive nature of existing subscriptions if they are.”

Rationale: The intent is for invocations of the Subscribe Interaction Class With Regions service for any given interaction class to be cumulative with respect to the set of subscribed regions of a given interaction class, but substitutive with respect to whether each (interaction class, region) pair is subscribed actively or passively. If the current invocation of the Subscribe Interaction Class With Regions service includes a given (interaction class, region) subscription that already exists, the property of active versus passive for that (interaction class, region) subscription is substituted according to the value (or absence) of the optional passive subscription indicator argument to the current invocation of the Subscribe Interaction Class With Regions service. [New in Release 2]
Interpretation 2

The following precondition is added to this service,

“All supplied region designators are designators of region specifications. If a region designator specified is not a designator of a region specification, the “Invalid region” exception shall be generated.”

Rationale: This service shall result in the creation of one or more region realizations. A region realization can only be derived from a region specification, not a region template, because all range bounds of the specified regions of the region realization must be set. If the designator of a region template, instead of a designator of a region specification, is used as an argument to this service, then this service could not result in the creation of a region realization because the range bounds of one or more of the dimensions in the region would not be set. [New in Release 2]
Service 9.11: Unsubscribe Interaction Class With Regions
Interpretation 1

The first sentence of this service description reads,

"The Unsubscribe Interaction Class With Regions service shall inform the RTI that it shall no longer notify the joined federate of interactions of the specified class that are sent into the specified region."

This sentence is changed to read,

“The Unsubscribe Interaction Class With Regions service shall require the RTI to remove the specified region from the subscription region set of the specified interaction class, which is used to determine when the Receive Interaction † service shall be invoked at this joined federate.”

Rationale: The purpose of the Unsubscribe Interaction Class With Regions service is to remove subscriptions with regions for a given interaction class such that those subscriptions with regions will no longer be part of the calculation regarding whether or not the update region set of a sent interaction overlaps the subscription region set for that interaction class.

Here is an example: Suppose that federate 1 has a given interaction class subscribed with two different regions, R1 and R2. Suppose that federate 2 sends an interaction of the given class with region R3. Suppose also that region R3 overlaps region R1 and region R3 also overlaps region R2. If federate1 invokes the Unsubscribe Interaction Class With Regions service for that object class and region R1, federate 1 would still expect to receive an interaction of that class that is sent with region R3 because federate 1 is still subscribed to the interaction class with region R2. If federate 1 also invokes the Unsubscribe Interaction Class With Regions service for that object class and region R2, however, federate 1 would not expect to receive an interaction of that class that is sent with region R3. [New in Release 2]
Interpretation 2

The first sentence of the second paragraph of the 9.11 service description reads,

"If the region set provided is empty, no subscription to the interaction class shall not be removed."

This sentence is changed to read,

" If the region set provided is empty, no subscriptions to the interaction class shall be removed."

Rationale: This change corrects a typographical error. [New in Release 2]

Interpretation 3

The following precondition is added to this service,

“All supplied region designators are designators of region specifications. If a region designator specified is not a designator of a region specification, the “Invalid region” exception shall be generated.”

Rationale: Only region specifications, not region templates, can be used as arguments to the Subscribe Interaction Class With Regions service, so it would make no sense to use a region template as argument to the Unsubscribe Interaction Class With Regions service. A region template cannot be subscribed, so it therefore cannot be unsubscribed either. [New in Release 2]

Service 9.12: Send Interaction With Regions
Interpretation 1

The second sentence of this service description reads,

"The interaction parameters shall only be those in the specified class and all super-classes, as defined in the FDD."

This sentence is changed to read,

“Only parameters that are available at the specified interaction class may be sent in a given interaction, but a federate is not required to send all available parameters of the interaction class with the interaction.”

Rationale: This interpretation is needed for clarification. [New in Release 2]
Interpretation 2

The following precondition is added to this service,

“All supplied region designators are designators of region specifications. If a region designator specified is not a designator of a region specification, the “Invalid region” exception shall be generated.”

Rationale: This service shall result in the creation of one or more region realizations. A region realization can only be derived from a region specification, not a region template, because all range bounds of the specified regions of the region realization must be set. If the designator of a region template, instead of a designator of a region specification, is used as an argument to this service, then this service could not result in the creation of a region realization because the range bounds of one or more of the dimensions in the region would not be set. [New in Release 2]
Service 9.13: Request Attribute Value Update With Regions
Interpretation 1

The following precondition is added to this service,

“All supplied region designators are designators of region specifications. If a region designator specified is not a designator of a region specification, the “Invalid region” exception shall be generated.”

Rationale: This service shall result in the creation of one or more region realizations. A region realization can only be derived from a region specification, not a region template, because all range bounds of the specified regions of the region realization must be set. If the designator of a region template, instead of a designator of a region specification, is used as an argument to this service, then this service could not result in the creation of a region realization because the range bounds of one or more of the dimensions in the region would not be set. [New in Release 2]
DDM Typos:

Interpretation 1

The first part of the second paragraph of clause 9.1.6 reads,

"A joined federate using DDM services shall interpret all uses of the following three DM service…"

This text is changed to read (changes in boldface),

"A joined federate using DDM services shall interpret all uses of the following three Object Management service…"

Rationale: This change corrects a typographical error. [New in Release 2]

Interpretation 2

In Service 9.5, Register Object Instance With Regions, the returned argument reads,

“a) Object instance designator”

This returned argument is changed to read,

“a) Object instance handle”.

Rationale: This change corrects a typographical error. [New in Release 2]

8. Support Services Interpretations
Section 10.1.2: Advisory Switches
Interpretation 1

The second paragraph of this clause reads, "The enabling of an advisory switch directs that the RTI shall inform the joined federate, via the appropriate advisory notifications, whenever the conditions covered by that advisory change." The following text is added to the introductory text for this service description,

“For purposes of determining whether the conditions covered by each advisory have changed, when the conditions required for sending each advisory become relevant at a given federate, the initial state of each advisory, as known by that federate, is as follows:

1. Before a federate begins publishing an object class, the conditions covered by the Object Class Relevance Advisory switch are assumed to be such that the registration of new object instances of the specified object class is not advised.

2. Before a federate begins publishing an interaction class, the interaction class is in the Interactions Turned Off state with respect to that federate. (see Figure 12)

3. Before a federate becomes the owner of an instance attribute, the instance attribute is in the Updates Turned Off state with regard to that federate. (see Figure 14)

4. Before a federate knows about an object instance, all of the instance attributes of that object instance are in the Attributes Out-of-Scope state with regard to the federate. (see Figure 14)”

Rationale: The following two examples demonstrate the use of item 1:

Fed1 enables the Object Class Relevance Advisory switch or it is already enabled as a result of settings in the FDD.

Fed2 subscribes to object class A.B, attribute Y, denoted A(Y).

Fed1 publishes A.B(X). According to item 1 above, before Fed1 began publishing A.B(X), it was in a state such that registration of new object instances of object class A.B was not advised. Upon publishing A.B(X), it remains in a state such that registration of new object instances of object class A.B is not advised. Therefore,

Fed1 shall not receive a Stop Registration For Object Class advisory because the conditions covering that advisory have not changed at Fed1.

Alternatively,

Fed1 enables the Object Class Relevance Advisory switch or it is already enabled as a result of settings in the FDD.

Fed2 subscribes to A(X).

Fed1 publishes A(X). According to item 1 above, before federate 1 began publishing A(X), it was in a state such that registration of new object instances of object class A was not advised. Then, upon publishing A(X), it becomes in a state such that registration of new object instances of object class A is advised. Because the conditions covering the advisory have changed, Fed1 receives a Start Registration For Object Class † service invocation for object class A.

The following two examples demonstrate the use of item 2:

Fed1 enables the Interaction Relevance Advisory switch or it is already enabled as a result of settings in the FDD.

Fed2 subscribes to interaction class A.B.

Fed1 publishes interaction class A.C. According to item 2 above, before Fed1 began publishing interaction class A.C, it was in a state such that interactions of class A.C were not relevant to any other federate in the federation execution. Then, upon publishing interaction class A.C, it remained in a state such that interactions of class A.C are not relevant to other federates in the federation execution. Therefore, because the conditions covering that advisory have not changed at Fed1, Fed1 shall not receive a Turn Interactions Off † service invocation for interaction class A.C.

Alternatively,

Fed1 enables the Interaction Relevance Advisory switch or it is already enabled as a result of settings in the FDD.

Fed2 subscribes to interaction class A.

Fed1 publishes interaction class A. According to item 2 above, before federate 1 began publishing interaction class A, it was in a state such that interactions of class A were not relevant to other federates in the federation execution. Then, upon publishing interaction class A, it becomes in a state such that interactions of class A are relevant to other federates in the federation execution. Because the conditions covering the advisory have changed, Fed1 receives a Turn Interactions On † service invocation for interaction class A.

The following is an example of the use of item 3 (ignoring scope for now):

Suppose Fed1 and Fed2 are both publishing and subscribing to A(x), but not A(y). The Attribute Relevance advisory switch is enabled at both federates.

Fed1 registers an instance of class A, A1, which Fed2 is expected to discover.

As a result of registering A1, Fed1 owns instance attribute x of A1. (call it A1(x)), but A1(y) is unowned.

According to item 3 above, before Fed1 became the owner of A1(x) Fed1 was in the Updates Turned Off state with regard to both A1(x) and A1(y). Upon becoming the owner of A1(x), Fed1 enters the Updates Turned On state with regard to A1(x), and remains in the Updates Turned Off state with regard to A1(y). Because the conditions covering the advisory have changed for A1(x) but not A1(y), Fed1 shall get a Turn Updates On for A1(x), but it shall not get any advisories for A1(y).

The following is also an implication of item 3:

Continuing with the previous example, Fed1 transfers ownership of A1(x) to Fed2.

According to item 3 above, before Fed2 became the owner of A1(x), it was in the Updates Turned Off state with regard to A1(x). Upon becoming the owner of A1(x), Fed2 enters the Updates Turned On state with regard to A1(x) and so receives a Turn Updates On † service invocation for A1(x).

Fed2 unsubscribes to A(x).

Fed2 transfers ownership of A1(x) back to Fed1.

According to item 3 above, before Fed1 became the owner of A1(x) it was in the Turn Updates Off state with respect to A1(x). Upon becoming the owner of A1(x), Fed1 is still in the Updates Turned Off state with respect to A1(x) because no other federate is subscribed to A(x). So, even though the last advisory that Fed1 had received with respect to A1(x) was Turn Updates On, and now the conditions covering that advisory have changed such that Fed1 is now in the Updates Turned Off state with respect to A1(x), according to item 3 above, Fed1 will not receive a Turn Updates Off † callback for A1(x).

The following is an example of the use of item 4 in which the federate begins to know an object instance:

Suppose Fed1 and Fed2 are both publishing and subscribing to A(x), but not A(y). The Attribute Scope Advisory switch is enabled at both federates.

Fed1 registers an instance of this class, A1, which Fed2 is expected to discover. According to item 4 above, before Fed2 knew about A1, all of the instance attributes of A1 were in the Attributes Out-of-Scope state with regard to Fed2; upon A1 becoming known by Fed2, instance attribute A1(x) moves into the Attribute-In-Scope state at Fed2 and instance attribute A1(y) remains in the Attribute-Out-of-Scope state at Fed2, because A1(x) is owned by Fed1 but A1(y) is not owned by any federate. Therefore, according to item 4 above, Fed2 shall get an Attributes In Scope † callback only for A1(x). [New in Release 2]

Interpretation 2

The first sentence of the last paragraph of clause 10.1.2 reads,

“Note that if a joined federate unsubscribes with region to an instance attribute’s corresponding class attribute, but is still subscribed to that class attribute with some other region, it may or may not have caused the instance attribute to go out-of-scope (assuming it was previously in-scope.)”

This sentence is changed to read (changes in boldface),

“Note that if a joined federate unsubscribes with or without region to an instance attribute’s corresponding class attribute, but is still subscribed to that class attribute with some other region, it may or may not have caused the instance attribute to go out-of-scope (assuming it was previously in-scope.)”

Rationale: Adding the fact that the case covers both unsubscribes with region and unsubscribes without region provides clarification. It is consistent with the description of the implicit-out-of-scope situations that are presented earlier in the clause. [New in Release 2]
Service 10.9: Get Parameter Name
Interpretation 1

Exception (c) of this service reads,

 “The parameter is an available parameter of the interaction class.”

This exception is changed to read (changes in boldface),

 “The parameter is not an available parameter of the interaction class.”

[New in Release 2]

Service 10.30: Get Dimension Handle Set
Interpretation 1

The following precondition is added to this service,

“The region was either created by the invoking joined federate using the Create Region Service or it was conveyed to the invoking joined federate in a Set of Sent Region Designators argument. If the region designator specified is not the designator of a region that was either created by the invoking federate or conveyed to it in a Set of Sent Region Designators argument, the “Invalid region” exception shall be generated.”

Rationale: A federate shall not be able to invoke the Get Dimension Handle Set service on a region designator that it received by any means other than as a result of creating the region itself, or having had the region realization (copy) designator passed to it in a conveyed Set of Sent Region Designators argument of either a reflect or a received interaction. It is undefined as to what behavior would be expected if a federate were to receive a region realization designator by any other means and invoke the Get Dimension Handle Set service on it. [New in Release 2]
Service 10.31: Get Range Bounds

Interpretation 1

The following precondition is added to this service,

“All supplied region designators are designators of either region specifications or of region realization copies. If a region designator specified is not a designator of a region specification or of a region realization copy, the “Invalid region” exception shall be generated.”

Rationale: If the designator of a region template, instead of a designator of either a region specification or a region realization copy, is used as an argument to this service, then this service would not be able to return the range bounds for those dimensions of the region template that have not yet been set. [New in Release 2]
Interpretation 2

There shall be an additional pre-condition to this service that reads,

“The region was either created by the invoking joined federate using the Create Region Service or it was conveyed to the invoking joined federate in a Set of Sent Region Designators argument.” If the region designator specified is not the designator of a region that was either created by the invoking federate or conveyed to it in a Set of Sent Region Designators argument, the “Invalid region” exception shall be generated.”

Rationale: A federate shall not be able to invoke the Get Range Bounds service on a region specification designator that it received by any means other than as a result of creating the region itself, or having had the region specification (copy) designator passed to it in a conveyed Set of Sent Region Designators argument of either a reflect or a received interaction. It is undefined as to what behavior would be expected if a federate were to receive a region specification designator by any other means and invoke the Get Range Bounds service on it. [New in Release 2]
Service 10.35: Initialize RTI

Interpretation 1

This service is deleted.

Rationale: This service is not well defined. For example, the service description indicates that it is a requirement that the Initialize RTI service be invoked before any other service. However, none of the other services include an exception that should be thrown if they are invoked before the Initialize RTI service is invoked [New in Release 2]
Service 10.36: Finalize RTI

Interpretation 1

This service is deleted.

Rationale: This service is not well-defined, nor is it in the C++ API. For example, RTIambassador::~RTIambassador() in the C+ API is not the Finalize RTI service. [New in Release 2]
9. Management Object Model Interpretations
11.1: MOM Overview

Interpretation 1

The following text is added to clause 11.1,

“A null attribute value in a reflect is defined to mean that the attribute/value pair set shall be present in the reflect, but the value will be an empty (zero-length) array.”

Rationale: This interpretation is needed for clarification. Some attribute definitions in Table 16 indicate that under certain circumstances the value of a MOM attribute shall be null. For example, according to Table 16, if no saves have occurred, the value of the HLAlastSaveName attribute shall be null. [New in Release 2]

11.4.1: Normal RTI MOM administration: item (g)

Interpretation 1

The first part of item (g) of clause 11.4.1 reads,

“The RTI shall update the values of all attributes of instances of HLAmanager.HLAfederate found in Table 4…”

This part of item (g) is changed to read (changes in boldface),

“The RTI shall update the values of all attributes of instances of HLAmanager.HLAfederate found in Table 6…”

Rationale: Table 6, not Table 4, is the MOM attribute table. [New in Release 2]

Interpretation 2

Item (d) of clause 11.4.1 reads,

“When sending an interaction of one of the leaf classes in Table 5, the RTI shall always supply all parameters listed in Table 7 for that interaction class, and no more.”

Item (d) is changed to read (changes in boldface),

“When sending an interaction of one of the leaf classes in Table 5, the RTI shall always supply all parameters listed in Table 7 for that interaction class, and no more, with the following exceptional cases in which the RTI shall not supply all the parameters:

· the HLAfederate parameter of the HLAmanager.HLAfederate.HLAreport.HLAreportSynchronizationPoints interaction shall not be supplied

· the HLAfederate parameter of the HLAmanager.HLAfederate.HLAreport.HLAreportSynchronizationPointStatus interaction shall not be supplied
· the HLAknownClass parameter of the HLAmanager.HLAfederate.HLAreport.HLAreportObjectInstanceInformation interaction shall not be supplied if the HLAfederate parameter of this interaction specifies a joined federate that does not know the object instance specified by the HLAobjectInstance parameter of this interaction.”
Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation.

The value of the HLAfederate parameter is not relevant to the other information that is provided in the HLAmanager.HLAfederate.HLAreport.HLAreportSynchronizationPoints or the HLAmanager.HLAfederate.HLAreport.HLAreportSynchronizationPointStatus interactions. These interactions are more like HLAmanager.HLAfederation than HLAmanager.HLAfederate interactions. There is no reason that the RTI should supply the HLAfederate parameter.

If a federate does not know an object instance, then that object instance has no known class at that federate. Therefore, there is no valid value of the HLAknownClass parameter of a HLAmanager.HLAfederate.HLAreport.HLAreportObjectInstanceInformation interaction that can be sent for this federate and object instance. [New in Release 2]

Interpretation 3

The following text is added to clause 11.1,

“A null parameter value in an interaction is defined to mean that the parameter/value pair set shall be present in the interaction, but the value will be an empty (zero-length) array. “

Rationale: This interpretation is needed for clarification. Some parameter definitions in Table 17 indicate that under certain circumstances the value of a MOM interaction parameter shall be null. For example, according to Table 17, if the specified service does not normally return a value, then the HLAreturnedArgument parameter of the HLAmanager.HLAfederate.HLAreport.HLAreportServiceInvocation interaction shall be null. Also, if the value of the HLAsuccessIndicator parameter of the HLAmanager.HLAfederate.HLAreport.HLAreportServiceInvocation interaction is HLAtrue, then the value of the HLAexception parameter shall be null. [New in Release 2]
Interpretation 4

The following text is added to clause 11.4.1,

“Unless specifically noted otherwise in Table 17, when a federate sends an interaction, it shall always supply all pre-defined parameters that are available at that interaction class and no more, with the following exceptions:

· the HLAfederate parameter of the HLAmanager.HLAfederate.HLArequest.HLArequestSynchronizationPoints interaction is not required

· the HLAfederate parameter of the HLAmanager.HLAfederate.HLArequest.HLArequestSynchronizationPointStatus interaction is not required

· a federate shall not be required to supply parameters of any HLAmanager.HLAfederate.HLAservice interaction that correspond to optional arguments of the HLA service that the HLAmanager.HLAfederate.HLAservice interaction is intended to cause to be invoked on behalf of another federate. (For example, HLAattributeList is not a required parameter of the HLAmanager.HLAfederate.HLAservice.HLAunpublishObjectClassAttributes interaction because the set of attribute designators argument of the Unpublish Object Class Attributes service is an optional argument to that service)

· a federate shall supply at least one of the parameters of the HLAmanager.HLAfederate.HLAadjust.HLAsetSwitches interaction.”

Rationale: While section 11.4.1 specifies what parameters shall be supplied when the RTI sends interactions, it does not discuss what parameters shall be supplied when a federate sends MOM interactions. In order for the RTI to be able to send a HLAmanager.HLAfederate.HLAreport.HLAreportMOMexception interaction when a MOM interaction is sent without all the necessary parameters, it must be well-defined as to what the necessary parameters for each interaction are.

The rationale for why the HLAfederate parameter of the HLAmanager.HLAfederate.HLArequest.HLArequestSynchronizationPoints and the HLAmanager.HLAfederate.HLArequest.HLArequestSynchronizationPointStatus interactions is not required is that these interactions request federation-wide information rather than federate-specific information, so the value of the HLAfederate parameter is not relevant to these interactions. [New in Release 2]

11.4.2: Sending MOM interactions by federates during save/restore

Interpretation 1

Item (a) in this clause reads,

“A joined federate shall be allowed to send a MOM HLAresignFederationExecution interaction when either a save or a restore is in progress.”

Item (a) is changed to read (changes in bodface),

“A joined federate shall be allowed to send a MOM HLAresignFederationExecution interaction when either a save or a restore is in progress. However, if a federate sends a MOM HLAresignFederationExecution interaction during the interval of time after the last federate in the federation execution has invoked the Federate Restore Complete service but before the Federation Restored † service has been invoked at all federates, the results of sending the HLAresignFederationExecution interaction are unpredictable because federate designators are not well-defined during this interval.”

Rationale: See interpretation 2 of Service 4.24, Query Federation Restore Status. [New in Release 2]
Convey Region Designator Sets Switch
Interpretation 1

Throughout the Management Object Model clause the table entries read such that they make the Convey Region Designator Sets Switch applicable on a federation-wide basis. These entries are changed to make the Convey Region Designator Sets Switch applicable on a per-federate basis. The specific changes to tables 5, 6, 7, 15, 16, and 17 are as follows:

Table 5 - MOM interaction class structure table

Add the "HLAsetSwitches (S)" interaction class to the HLAinteractionRoot.HLAmanager.HLAfederate.HLAadjust interaction after the HLAsetExceptionReporting interaction.

Table 6 - MOM attribute table

Add the following attribute entry for the HLAobjectRoot.HLAmanager.HLAfederate object class after the HLAtimeAdvancingTime attribute:

	Object
	Attribute
	Datatype
	Update Type
	Update

Condition
	T/A
	P/S
	Available Dimensions
	Transportation
	Order

	
	HLAconveyRegionDesignatorSets
	HLAswitch
	Conditional
	MOM interaction
	N
	P
	Federate
	HLAreliable
	Receive

Remove the HLAobjectRoot.HLAmanager.HLAfederation.HLAconveyRegionDesignatorSets attribute entry.

Table 7 - MOM parameter table

Add the following parameter entry for the HLAinteractionRoot.HLAmanager.HLAfederate.HLAadjust.HLAsetSwitches interaction class (this is a new class):
	Interaction
	Parameter
	Datatype
	Available Dimensions
	Transportation
	Order

	
	HLAconveyRegionDesignatorSets
	HLAswitch
	NA
	HLAreliable
	Receive

Remove the HLAinteractionRoot.HLAmanager.HLAfederation.HLAadjust.HLAsetSwitches.
HLAconveyRegionDesignatorSets parameter entry.

Table 15 - MOM interaction class definitions table

Add the following interaction entry after the HLAinteractionRoot.HLAmanager.HLAfederate.HLAadjust.HLAsetExceptionReporting interaction:

	Interaction
	Definition

	HLAinteractionRoot.HLAmanager.HLAfederate.HLAadjust.HLAsetSwitches
	Set the values of joined federate specific switches. A joined federate may send individual declared parameters of this subclass.

Change the definition of the HLAinteractionRoot.HLAmanager.HLAfederation.HLAadjust.HLAsetSwitches entry to be:

Set the values of federation execution-wide switches. A joined federate may send individual declared parameters of this subclass.

Table 16 - MOM attribute definitions table

Add the following attribute entry to the HLAobjectRoot.HLAmanager.HLAfederate object class after the HLAtimeAdvancingTime attribute:

	Class
	Attribute
	Definition

	
	HLAconveyRegionDesignatorSets
	Value of joined federate's Convey Region Designator Sets Switch. Updated when value of switch changes.

Remove the HLAobjectRoot.HLAmanager.HLAfederation.HLAconveyRegionDesignatorSets attribute entry.

Table 17 - MOM parameter definitions table

Add the following parameter entry to the HLAinteractionRoot.HLAmanager.HLAfederate.HLAadjust.HLAsetSwitches interaction class (this is a new class):

	Class
	Parameter
	Definition

	
	HLAconveyRegionDesignatorSets
	Set the joined federate's Convey Region Designator Sets Switch to the provided value.

Change the definition of the HLAmanager.HLAfederation.HLAadjust.HLAsetSwitches.HLAautoProvide entry to be:

Set the federation-wide Auto-Provide Switch to the provided value.

Remove the HLAinteractionRoot.HLAmanager.HLAfederation.HLAadjust.HLAsetSwitches.
HLAconveyRegionDesignatorSets parameter entry.

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. It has been determined to be more useful for the Convey Region Designator Sets Switch to work on a per-federate, rather than on a federation-wide basis. This enables each federate to control whetheror not it receives conveyed regions, and it enables those federates that do not use DDM to be insulated from receiving the DDM-related information on conveyed regions. [New in Release 2]

Table 16: MOM attribute table: HLAfederateState
Interpretation 1

The following text is added to the definition column of Table 16 for the HLAfederateState attribute of the MOM HLAmanager.HLAfederate object class,

“The MOM may, but is not required to, update any HLAfederateState instance attribute values during the interval after the last federate in the federation execution invokes the Federate Restore Complete service but before the last Federation Restored † callback is invoked at some federate for a given federation restoration.”

Rationale: The HLAfederateState attribute of the HLAmanager.HLAfederate object class is of update type Conditional and its update condition is Service Invocation. This means that if a service invocation occurs that causes the HLAfederateState of a HLAmanager.HLAfederate object instance to change value, then the corresponding instance attribute shall be updated. An exception to this occurs when a federate’s state changes from that of Restoring to that of Waiting for Federation to Restore. In this case, the instance attribute may be updated. Between the time that the last federate invokes the Federate Restore Complete service and the time that the Federation Restored † service is invoked at the last federate in the federation execution, federate designators are undefined. During this interval of flux, it does not make sense for the RTI to maintain the values of instance attributes of HLAmanager.HLAfederate object instances, because it is not clear to which federate any given HLAmanager.HLAfederate object instance corresponds, nor is it clear at which federate an update to such an instance attribute should be reflected. The state of each HLAmanager.HLAfederate object instance is in flux during this portion of a restore. Only after the Federation Restored † service has been invoked at all federates, causing them to move back into the Active Federate stat,e shall the RTI resume maintaining the values of instance attributes of HLAmanager.HLAfederate object instances. For further information, see interpretation 2 of Service 4.24, Query Federation Restore Status. [New in Release 2]

Table 14: MOM object class definitions table: HLAmanager.HLAfederation
Interpretation 1

The third sentence of the definition entry for the HLAmanager.HLAfederation object class reads,

“It [the RTI] shall not automatically update the values of the instance attributes; a joined federate shall use a Request Attribute Values Update service to obtain values for the instance attributes.”

This sentence is deleted.

The following text and table are added in its place,

“The RTI shall respond to the invocation, by any federate, of the Request Attribute Value Update service for this object class or for any instance attribute of an object instance of this class by supplying values via the normal instance attribute update mechanism, regardless of whether the attribute has a data type of static or conditional. In addition to its responsibility to update attributes of object instances of this class when those updates are explicitly requested, the RTI shall automatically update instance attributes of object instances of this class according to the update policy of the attribute, which is determined by the update type of the class attribute in Table 6. Those attributes that have an update type of Conditional shall have update conditions as defined in the following table:”

	Attribute
	Update Condition

	HLAlastSaveName
	Whenever service Federation Saved is successfully invoked with a save-success indicator of successful.

	HLAlastSaveTime
	Whenever service Federation Saved is successfully invoked with a save-success indicator of successful.

	HLAnextSaveName
	Whenever service Request Federation Save is successfully invoked.

	HLAnextSaveTime
	Whenever service Request Federation Save is successfully invoked.

	HLAautoProvide
	Whenever the HLAmanager.HLAfederate.HLAfederation.HLAadjust.HLAsetSwitches interaction is sent to successfully change the value of the HLAautoProvide parameter.

Rationale: Without this interpretation, IEEE 1516.1-2000 contradicts IEEE 1516.2-2000 because the definitions for the static and conditional update types in IEEE 1516.2-2000 include occasions when the RTI is required to update the attributes automatically. For example, an attribute of static update type shall be updated upon registration of the object instance, and an attribute of conditional update type shall be updated automatically as dictated by the update condition. Each of these occasions for the automatic updating of instance attributes contradicts the existing text in Table 14 that states that the RTI shall not automatically update the values of the instance attributes. Furthermore, the precise update conditions need to be specified in the above table because while IEEE 1516.2-2000 defines the update types, it is left up to IEEE 1516.1-2000 to define the update condition for each attribute that is of conditional update type. The current entries in Table 6, for the attributes listed in the table above, which are either “Service invocation” or “MOM interaction”, are too vague and do not specify the update conditions precisely enough.

The reason that the phrase “a joined federate shall use a Request Attribute Value Update service to obtain values for the instance attributes” was deleted from the definition section is that this phrase places a requirement on federates, rather than on the RTI. No federate is required to invoke the Request Attribute Value Update service to obtain values for the instance attributes. However, as the interpretation says, if a federate does invoke the Request Attribute Value Update service to obtain values for HLAmanager.HLAfederation instance attributes, the RTI shall respond by supplying values via the normal instance attribute update mechanism. [New in Release 2]

Table 14: MOM object class definitions table: HLAmanager.HLAfederate
Interpretation 1

The following text and table are added to the definition entry for theHLAmanager.HLAfederate object class in Table 14,

“The RTI shall respond to the invocation, by any federate, of the Request Attribute Value Update service for this object class or for any instance attribute of an object instance of this class by supplying values via the normal instance attribute update mechanism, regardless of whether the attribute has a data type of static, periodic, or conditional. In addition to its responsibility to update attributes of object instances of this class when those updates are explicitly requested, the RTI shall automatically update instance attributes of object instances of this class according to the update policy of the attribute, which is determined by the update type of the class attribute in Table 6. For those attributes that have an update type of Periodic, the update time interval shall be determined by the HLAreportPeriod parameter in an interaction of classHLAmanager.HLAfederate.HLAadjust.HLAsetTiming. If this value is never set or is set to zero, no periodic updates shall be performed by the RTI. Those attributes that have an update type of Conditional shall have update conditions as defined in the following table:”

	Attribute
	Update Condition

	HLAtimeConstrained
	Whenever services Time Constrained Enabled † or Disable Time Constrained are successfully invoked

(including via the HLAdisableTimeConstrained interaction).

	HLAtimeRegulating
	Whenever services Time Regulation Enabled † or Disable Time Regulation are successfully invoked

(including via the HLAdisableTimeRegulation interaction).

	HLAasynchronousDelivery
	Whenever services Enable Asynchronous Delivery or Disable Asynchronous Delivery are successfully invoked (including via the HLAenableAsynchronousDelivery or HLAdisableAsynchronousDelivery interactions).

	HLAfederateState
	Whenever the services Initiate Federate Save †, Federation Saved †, Federation Restore Begun †, Confirm Federation Restoration Request (success) †, or Join Federation Execution are successfully invoked. Also, after the Federation Restored † service has been invoked at all federates in the federation execution (see Interpretation 1 of Table 16: MOM attribute table: HLAfederateState).

	HLAtimeManagerState
	Whenever services Time Advance Request, Time Advance Request Available, Next Message Request, Next Message Request Available, Flush Queue Request, or Time Advance Grant † are successfully invoked (including via the HLAtimeAdvanceRequest, HLAtimeAdvanceRequestAvailable, HLAnextMessageRequest, HLAnextMessageRequestAvailable, or HLAflushQueueRequest interactions).

	HLAconveyRegionDesignatorSets
	Whenever the HLAmanager.HLAfederate.HLAfederate.HLAadjust.HLAsetSwitches interaction is sent to successfully change the value of the HLAconveyRegionDesignatorSets parameter.

Rationale: This interpretation is required to specify the precise update conditions for conditional attributes because while IEEE 1516.2-2000 defines the update types, it is left up to IEEE 1516.1-2000 to define the update condition for each attribute that is of conditional update type. The current entries in Table 6, for the attributes listed in the table above, which are either “Service invocation” or “MOM interaction”, are too vague and do not specify the update conditions precisely enough. Similarly, the time interval according to which the periodic attributes shall be updated needs to be specified because while IEEE 1516.2-2000 defines the update types, it is left up to IEEE 1516.1-2000 to define the time interval for the periodic updates. The existing text in the definition entry for HLAmanager.HLAfederate uses the term “Dynamic attributes”, which is undefined; this interpretation clarifies the time interval for periodic attributes. [New in Release 2]

Table 15: MOM interaction class definitions table: HLArequestSubscriptions
Interpretation 1

The second sentence of the definition of the HLAmanager.HLAfederate.HLArequest.HLArequestSuscriptions interaction reads,

“It shall result in one interaction of class HLAmanager.HLAfederate.HLAreport.HLAreportInteractionSubscription and one interaction of class HLAmanager.HLAfederate.HLAreport.HLAreportObjectClassSubscription for each object class published.”

This sentence is changed to read (changes in boldface),

“It shall result in one interaction of class HLAmanager.HLAfederate.HLAreport.HLAreportInteractionSubscription and one interaction of class HLAmanager.HLAfederate.HLAreport.HLAreportObjectClassSubscription for each different combination of (object class, passive subscription indicator) values that are subscribed.”

For example, if a federate is subscribed to a given object class and class attribute with the same passive/active subscription indicator value either with multiple DDM subscriptions or with one or more DDM subscriptions and a DM subscription, that (object class, attribute, active/passive indicator) triple shall only appear in one HLAmanager.HLAfederate.HLAreport.HLAreportObjectClassSubscription interaction that is sent. However, if a federate is subscribed to a given object class and class attribute with different passive/active subscription indicators (at least once actively and at least once passively), either with multiple DDM subscriptions or with one or more DDM subscriptions and a DM subscription, that (object class, attribute, active/passive indicator) triple shall appear in two separate HLAmanager.HLAfederate.HLAreport.HLAreportObjectClassSubscription interactions that are sent, one of which has an HLAactive parameter value of HLAtrue, and one of which has an HLAactive parameter value of HLAfalse.

In addition, the HLAnumberOfClasses parameter shall represent the count of the number of different (object class, active/passive subscription indicator) values being reported. This number shall not exceed twice the number of different object classes that are subscribed.

Similarly, if a federate is subscribed to a given interaction class with the same active/passive subscription indicator value with both a DDM subscription and a DM subscription, that (interaction class, active/passive indicator) pair shall appear only once in the HLAmanager.HLAfederate.HLAreport.HLAreportInteractionSubscription interaction that is sent. However, if a federate is subscribed to a given interaction class with different active/passive subscription indicators (once actively and once passively), once with a DDM subscription and once with a DM subscription, that (interaction class, active/passive indicator) pair shall appear twice in the HLAmanager.HLAfederate.HLAreport.HLAreportInteractionSubscription interaction that is sent, once with an HLAactive parameter value of HLAtrue, and once with an HLAactive parameter value of HLAfalse.

Rationale: The change of the word “published” to “subscribed” is a correction of a typographical error.

The change that the HLArequestSubscriptions interaction shall result in one interaction of class HLAreportObjectClassSubscription for each different combination of (object class, passive subscription indicator) values that are subscribed by the federate is required in order to enable the information in the HLAreportObjectClass subscription interaction to, as specified in the Table 17 parameter definitions for the HLAnumberofClasses and HLAinteractionClassList parameters, “reflect related DDM usage”.

Each HLAreportObjectClassSubscription interaction must, according to Table 17, contain four parameters: HLAnumberOfClasses, HLAobjectClass, HLAactive, and HLAattributeList. When a federate subscribes to object class attributes using only DM subscriptions, all attributes that are subscribed at a given class must necessarily be all subscribed with the same passive subscription indicator value (either passive or active). However, when a federate subscribes to object class attributes using DDM subscriptions, it is possible for the federate to be subscribed to the same attribute at a given object class both passively and actively (as long as they are subscribed with different regions). The parameter information present in the HLAreportObjectClassSubscription interaction is not flexible enough to both meet the constraint that at most one interaction of the class HLAmanager.HLAfederate.HLAreport.HLAreportObjectClassSubscription shall be sent for each object class subscribed, and to accurately convey whether these subscriptions are either active, passive, or both active and passive.
The HLAnumberOfClasses parameter shall represent the count of the number of different (object class, active/passive subscription indicator) values being reported because this parameter is used to indicate to the federate how many

HLAreportObjectClassSubscription interactions to expect from the RTI.

[New in Release 2]

Table 15: MOM interaction class definitions table: HLAreportObjectInstancesUpdated:

Interpretation 1
The second sentence of the definition of this interaction reads,

“It shall report the number of object instances (by registered class of the object instances) for which the joined federate has invoked the Update Attribute Values service.”

This sentence is changed to read (changes in boldface),

“It shall report the number of object instances (by registered class of the object instances) for which the joined federate has successfully invoked the Update Attribute Values service.”

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation.

Unsuccessful invocations of this service would not be of interest and shall not be reported. [New in Release 2]

Table 15: MOM interaction class definitions table:HLAreportSynchronizationPointStatus

Interpretation 1
The following text is added to the definition column of the HLAreportSynchronizationPointStatus interaction entry in Table 15,

“One interaction of class HLAmanager.HLAfederate.HLAreport.HLAreportSynchronizationPointStatus shall be sent by the RTI for each active synchronization point in the federation execution. If there are no active synchronization points in the federation execution, no HLAmanager.HLAfederate.HLAreport.HLAreportSynchronizationPointStatus interaction shall be sent.”

Rationale: Each HLAmanager.HLAfederate.HLAreport.HLAreportSynchronizationPointStatus interaction reports on the status of only one synchronization point. Because the HLAmanager.HLAfederate.HLArequest.HLArequestSynchronizationPointStatus interaction does not include a HLAsyncPointName parameter that could be used to specify which synchronization point for which a report is requested, one HLAmanager.HLAfederate.HLAreport.HLAreportSynchronizationPointStatus interaction shall be sent for each active synchronization point in the federation execution. A federate is able to use the HLAmanager.HLAfederate.HLArequest.HLArequestSynchronizationPoints interaction to receive a report of all active synchronization points in the federation execution, so if a federate invokes the HLAmanager.HLAfederate.HLArequest.HLArequestSynchronizationPointStatus interaction when there are no active synchronization points, it is allowable for that federate to fail to receive a HLAmanager.HLAfederate.HLAreport.HLAreportSynchronizationPointStatus interaction in response. [New in Release 2]
Table 16: MOM attribute definitions table: HLAFDDID

Interpretation 1

The definition column for the HLAFDDID attribute entry of the MOM HLAmanager.HLAfederation object class reads

 "Identifier associated with the FDD used in the relevant Create Federation Execution service invocation.”

This definition is changed to read (changes in boldface),

"Identifier associated with the FDD used in the relevant Create Federation Execution service invocation. This identifier shall be the same as the FOM document designator argument that was supplied in the Create Federation Execution service when the federation execution was created. However, all of the path-specific information shall have been removed from the designator and, if this designator took the form of a URL, all of the URL-specific information shall also have been removed.”

Rationale: This interpretation provides additional information that was omitted from the standard. [New in Release 2]

Interpretation 2

The definition column for the HLAFDDID attribute entry of the MOM HLAmanager.HLAfederate object class reads,

"Identifier associated with the FDD used in the joined federate.”

This definition is changed to read (changes in boldface),

"Identifier associated with the FDD used in the joined federate. This identifier shall be the same as the FOM document designator argument that was supplied in the Create Federation Execution service when the federation execution was created.”

Rationale: This interpretation provides additional information that was omitted from the standard. [New in Release 2]

Table 16: MOM attribute definitions table: HLAreflectionsReceived

Interpretation 1

The definition column for the HLAreflectionsReceived attribute entry of the MOM HLAmanager.HLAfederate object class reads,

“Total number of reflections received by the joined federate.”

This definition is changed to read,

“Total number of times the Reflect Attribute Values † service has been invoked at the joined federate (as opposed to the number of instance attribute value reflections that have been received at the joined federate).”

Rationale: This interpretation clarifies an ambiguous portion of the standard. [New in Release 2]

Table 16: MOM attribute definitions table: HLAupdatesSent

Interpretation 1

The definition column for the HLAupdatesSent attribute entry of the MOM HLAmanager.HLAfederate object class reads,

“Total number of updates sent by the joined federate.”

This definition is changed to read,

“Total number of times the Update Attribute Values † service has successfully been invoked by the joined federate (as opposed to the number of instance attribute values that have been updated by the joined federate).”

Rationale: This interpretation clarifies an ambiguous portion of the standard. [New in Release 2]
Table 16: MOM attribute definitions table: HLAlastSaveTime

Interpretation 1
The first sentence of the definition column for the HLAlastSaveTime attribute entry of the MOM HLAmanager.HLAfederation object class reads,

“Logical time at which the last federation state timed save occurred.”

This sentence is changed to read,

“Logical time at which the last federation state save occurred. If the last save was not a timed save, then the HLAlastSaveTime attribute value shall be an empty (zero-length) HLAlogicalTime array to indicate that the value of the HLAlastSaveTime attribute is undefined.”

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. The value of the HLAlastSaveName attribute shall correspond to the value of the HLAlastSaveTime attribute. The way the definition of HLAlastSaveTime is worded in the specification, if a timed save occurs, followed by an untimed save, then the value of HLAlastSaveName would not correspond with the value of HLAlastSaveTime, which could prove astonishing to a user. Therefore, in order to ensure that these two values always correspond to the same save, if the last save is an untimed save, then the value of the HLAlastSaveTime attribute will not be defined. [New in Release 2]

Interpretation 2
The second sentence of the definition column for the HLAlastSaveTime attribute entry of the MOM HLAmanager.HLAfederation object class reads,

“The value shall not be defined if no timed saves have occurred.”

This definition is changed to read,

“If no timed saves have occurred the value shall be an empty (zero-length) HLAlogicalTime array.”

 Rationale: This interpretation clarifies an ambiguous portion of the standard. [New in Release 2]

 Table 16: MOM attribute definitions table: HLAnextSaveTime

Interpretation 1

Release 2 The second sentence of the definition column for the HLAnextSaveTime attribute entry of the MOM HLAmanager.HLAfederation object class reads,

“The value shall not be defined if no timed saves are scheduled.”

This definition is changed to read,

“If no timed saves are scheduled the value shall be an empty (zero-length) HLAlogicalTime array.”

 Rationale: This interpretation clarifies an ambiguous portion of the standard. [New in Release 2]

Table 16: MOM attribute definitions table: HLAobjectInstancesUpdated

Interpretation 1

The definition column for the HLAobjectInstancesUpdated attribute entry of the MOM HLAmanager.HLAfederate object class reads,

“Total number of object instances for which the joined federate has invoked the Update Attribute Values service.”

This definition is changed to read (changes in boldface),

“Total number of object instances for which the joined federate has successfully invoked the Update Attribute Values service.”

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation.

Unsuccessful invocations of this service would not be of interest and shall not be reported. [New in Release 2]

Table 16: MOM attribute definitions table: HLAobjectInstancesDeleted

Interpretation 1

The definition column for the HLAobjectInstancesDeleted attribute entry of the MOM HLAmanager.HLAfederate object class reads,

“Total number of times the Delete Object Instance service was invoked by the joined federate since the federate joined the federation.”

This definition is changed to read (changes in boldface),

“Total number of times the Delete Object Instance service was successfully invoked by the joined federate since the federate joined the federation.”

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation.

Unsuccessful invocations of this service would not be of interest and shall not be reported. [New in Release 2]

Table 16: MOM attribute definitions table: HLAobjectInstancesRegistered

Interpretation 1

The definition column for the HLAobjectInstancesRegistered attribute entry of the MOM HLAmanager.HLAfederate object class reads,

“Total number of times the Register Object Instance service or Register Object Instance With Regions was invoked by the joined federate since the federate joined the federation.”

This definition is changed to read (changes in boldface),

“Total number of times the Register Object Instance service and the Register Object Instance With Region service were successfully invoked by the joined federate since the federate joined the federation.”

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation.

Unsuccessful invocations of either service would not be of interest and shall not be reported. [New in Release 2]
Table 16: MOM attribute definitions table: HLAobjectInstancesDiscovered

Interpretation 1

The definition column for the HLAobjectInstancesDiscovered attribute entry of the MOM HLAmanager.HLAfederate object class reads,

“Total number of times the Discover Object Instance † service was invoked for the joined federate since the federate joined the federation.”

This definition is changed to read (changes in boldface),

“Total number of times the Discover Object Instance † service was invoked for the joined federate since the federate joined the federation. The value of the HLAobjectInstancesDiscovered attribute shall include multiple invocations of the Discover Object Instance † service for a given object instance that may occur as a result of invocation of the Local Delete Object Instance service at a federate.”

Rationale: This interpretation provides information regarding a situation that was not addressed in the standard. [New in Release 2]

Table 16: MOM attribute definitions table: HLAtimeGrantedTime and HLAtimeAdvancingTime

Interpretation 1

The following text is added to the definition column for both the HLAtimeGrantedTime and HLAtimeAdvancingTime attribute entries of the MOM HLAmanager.HLAfederate object class,

“The first time that the HLAtimeGrantedTime and the HLAtimeAdvancingTime attributes are updated, their values shall be the wall-clock time duration that the federate has spent in the state since the federate has been joined to the federation execution.”

Rationale: The original text does not specify what the value of these attributes should be if they have not yet been updated. The first reflect of a HLAtimeGrantedTime or HLAtimeAdvancingTime attribute that a federate receives may or may not be the first update of that attribute by the RTI. A federate has no way of knowing for sure whether a reflect of the HLAtimeGrantedTime or HLAtimeAdvancingTime attribute that it receives is a result of the first or of a subsequent update of that attribute. Having the value of the attributes be the amount of time since the federate had first joined the federation execution is a sensible choice for defining the case of the first update, which is undefined in the standard. [New in Release 2]
Table 17: MOM parameter definitions table: HLAreportPeriod

Interpretation 1

The following text is added to the definition column of the HLAreportPeriod parameter,

“If no interaction of class HLAmanager.HLAfederate.HLAadjust.HLAsetTiming has been sent, then no periodic updates of MOM attribute values shall be generated.”

Rationale: If no interaction of class HLAmanager.HLAfederate.HLAadjust.HLAsetTiming has been sent, then the value of the HLAreportPeriod is not defined. It makes sense to interpret this value to be zero (which means that periodic updates will not occur) unless and until this HLAreportPeriod value is explicitly set by the invocation of a HLAmanager.HLAfederate.HLAadjust.HLAsetTiming interaction. [New in Release 2]

Table 17: MOM interaction subclass HLAmanager.HLAfederate.HLAreport.HLAreportUpdatesSent
Interpretation 1

 The second sentence of the definition column of the HLAupdateCounts parameter reads,

“Each update count consists of an object class handle and the number of updates sent of that class.”

This sentence is changed to read (changes in boldface),

“Each update count consists of an object class handle and the number of instance attribute updates sent of that class.”

Here is an example: if a federate has invoked the Update Attribute Values service only once, and in this service invocation were arguments for an object instance of class A and n instance attributes of type reliable and m instance attributes of type best-effort, then in response to an interaction of class Manager.Federate.Request.RequestUpdatesSent, two Manager.Federate.Report.ReportUpdatesSent interactions shall be sent: one for transportation type reliable with an update count of n and one for transportation type best-effort with an update count of m. If that federate then invokes the Update Attribute Values service for an object instance of class A and one of the same instance attributes that was updated in the previous update of type reliable, then in response to an interaction of class Manager.Federate.Request.RequestUpdatesSent, two Manager.Federate.Report.ReportUpdatesSent interactions shall be sent: one for transportation type reliable with an update count of n+1 and one for transportation type best-effort with an update count of m.

Rationale: According to the definition of the HLAupdateCounts parameter in the HLAReportUpdatesSent interaction subclass given in Table 17, this parameter consists of a list of update counts, each of which consists of an object class handle and "the number of updates sent of that class". The question of what makes an update be of one class as opposed to another is answered in Table 15 (HLAreportUpdatesSent Interaction class definition): the class of an update is the registered class of the object instance of the update. However, it is not clear whether the number of updates is defined as the number of times the Update Attribute Values service was invoked by the federate for all object instances of a given object class, or the number of instance attribute updates that were accomplished by the federate for all object instances of a given object class. This interpretation selects the number of instance attribute updates because the update service is a service that acts on instance attributes, not on object instances. Similarly, transportation type is a property of instance attributes rather than object instances. The fact that updates to several different instance attributes of an object instance can be bundled together in a single Update Attribute Values service invocation is provided as a convenience to the programmer. The value of an update count shall not depend on whether a federate combines certain instance attribute value updates together in a single call or performs these updates as separate Update Attribute Values service invocations. [New in Release 2]
Interpretation 2

The following text is added to the definition column of the HLAupdateCounts parameter,

“If no updates of instance attributes of any object instances of any class for a given transportation type have been sent, then the RTI shall send a HLAmanager.HLAfederate.HLAreport.HLAreportUpdatesSent interaction for that transportation type. However, no HLAobjectClassBasedCount elements at all shall appear in the HLAobjectClassBasedCount array for that interaction of that transportation type. In other words, the HLAreportUpdatesSent interaction that is sent for that transportation type will have an empty HLAobjectClassBasedCount array.

If no updates of instance attributes of any object instances of a given class for a given transportation type have been sent, then no HLAobjectClassBasedCount element for that object class shall be in the HLAobjectClassBasedCount array of the HLAmanager.HLAfederate.HLAreport.HLAreportUpdatesSent interaction for that transportation type.”

Here is an example:

Suppose there are 3 classes defined in the FDD: A, A.B, and A.C.

Suppose there are 2 transportation types available for use.

Suppose that only the following 2 updates were sent:

Update of an object instance of class A, reliable attribute x.

Update of an object instance of class A.B, reliable attribute x and reliable attribute z.

Then, 2 HLAreportUpdatesSent interactions would be sent in response to a HLARequestUpdatesSent interaction, and those interactions would be as follows:

1. An interaction with 2 parameters: transportation type Reliable, and an HLAobjectClassBasedCount array with 2 HLAobjectClassBasedCount elements in it: one HLAobjectClassBasedCount element would be (class A, 1) and the other element would be (class A.B, 2). (There would be no HLAobjectClassBasedCount element for class A.C in this array.)

2. An interaction with 2 parameters: transportation type Best Effort, and an HLAobjectClassBasedCount array with no elements in it.

Rationale: This interpretation clarifies an ambiguous portion of the standard. [New in Release 2]

Table 17: MOM interaction subclass HLAmanager.HLAfederate.HLAreport.HLAreportReflectionsReceived

Interpretation 1

The second sentence of the definition column of the HLAreflectCounts parameter reads,

“Each reflection count consists of an object class handle and the number of reflections received of that class.”

This sentence is changed to read (changes in boldface),

“Each reflection count consists of an object class handle and the number of instance attribute reflections received of that class.”

Here is an example: if a federate has received the Reflect Attribute Values † service invocation twice, and in one of these service invocations were arguments for an object instance of class A and n instance attributes of type Reliable, and in another of these service invocations were arguments for an object instance of class A and m instance attributes of type Best Effort, then in response to an interaction of class Manager.Federate.Request.RequestReflectionsReceived, two Manager.Federate.Report.ReportReflectionsReceived interactions shall be sent: one for transportation type Reliable with a reflect count of n for object class A, and one for transportation type Best Effort with a reflection count of m for object class A. Furthermore, if that federate receives an additional Reflect Attribute Values † service invocation for an object instance of class A that contains a single attribute/value pair as argument, and the attribute is a reliable attribute that had also had a value reflected previously, then in response to an interaction of class Manager.Federate.Request.RequestReflectionsReceived, two Manager.Federate.Report.ReportReflectionsReceived interactions shall be sent: one for transportation type Reliable with a reflect count of n + 1 for object class A, and one for transportation type Best Effort with a reflection count of m for object class A

Rationale: The rationale for this interpretation is analogous to the rationale for the MOM Table 17: interaction subclass HLAmanager.HLAfederate.HLAreport.HLAreportUpdatesSent interpretation. As with the Update Attribute Values service, the Reflect Attribute Values † service is a service that acts on instance attributes, not on object instances. Similarly, transportation type is a property of instance attributes rather than of object instances. [New in Release 2]

Interpretation 2

The following text is added to the definition column of the HLAreflectCounts parameter,

“If no reflects of instance attributes of any object instances of any class for a given transportation type have been received, then the RTI shall send a HLAmanager.HLAfederate.HLAreport.HLAreportReflectionsReceived interaction for that transportation type. However, no HLAobjectClassBasedCount elements at all shall appear in the HLAobjectClassBasedCount array for that interaction of that transportation type. In other words, the HLAreportReflectionsReceived interaction that is sent for that transportation type shall have an empty HLAobjectClassBasedCount array.

If no reflects of instance attributes of any object instances of a given class for a given transportation type have been received, then no HLAobjectClassBasedCount element for that object class shall be in the HLAobjectClassBasedCount array of the HLAmanager.HLAfederate.HLAreport.HLAreportReflectionsReceived interaction for that transportation type. ”

Here is an example:

Suppose there are 3 classes defined in the FDD: A, A.B, and A.C.

Suppose there are 2 transportation types available for use.

Suppose that only the following 2 reflects were received:

Reflect of an object instance of class A, reliable attribute x.

Reflect of an object instance of class A.B, reliable attribute x and reliable attribute z.

Then, 2 HLAreportReflectionsReceived interactions would be sent in response to a HLArequestReflectionsReceived interaction, and those interactions would be as follows:

1. An interaction with 2 parameters: transportation type Reliable, and an HLAobjectClassBasedCount array with 2 HLAobjectClassBasedCount elements in it: one HLAobjectClassBasedCount element would be (class A, 1) the other element would be (class A.B, 2). (There would be no HLAobjectClassBasedCount element for class A.C in this array.)

2. An interaction with 2 parameters: transportation type Best Effort, and an HLAobjectClassBasedCount array with no elements in it.

Rationale: This interpretation clarifies an ambiguous portion of the standard. [New in Release 2]

Table 17: MOM use of HLAobjectClassBasedCounts array datatype in zero-value HLAobjectClassBasedCount cases

Interpretation 1

The following text is added to the definition of all parameters of datatype HLAobjectClassBasedCounts in Table 17,

“In all MOM interactions that have a parameter of datatype HLAobjectClassBasedCounts, if an HLAobjectClassBasedCount element of the HLAobjectClassBasedCounts array would have a value (object class, 0), the HLAobjectClassBasedCount element shall not be present in the HLAobjectClassBasedCounts array. In other words, only HLAobjectClassBasedCount elements that have positive counts shall be present in an HLAobjectClassBasedCounts array. From this, it follows that if all object class counts have a zero value, then the HLAobjectClassBasedCounts array shall not have any elements in it; it shall be an empty HLAobjectClassBasedCounts array. This interpretation affects the following MOM interactions:

· HLAmanager.HLAfederate.HLAreport.HLAreportObjectInstancesThatCanBeDeleted

· HLAmanager.HLAfederate.HLAreport.HLAreportObjectInstancesUpdated

· HLAmanager.HLAfederate.HLAreport.HLAreportObjectInstancesReflected

· HLAmanager.HLAfederate.HLAreport.HLAreportUpdatesSent (see its Interpretation 2)

· HLAmanager.HLAfederate.HLAreport.HLAreportReflectionsReceived (see its Interpretation 2)”

Rationale: This interpretation is a generalization of each of the Interpretation 2 stated above for the HLAmanager.HLAfederate.HLAreport.HLAreportUpdatesSent and the HLAmanager.HLAfederate.HLAreport.HLAreportReflectionsReceived interactions. [New in Release 2]
Table 17: MOM use of HLAinteractionCounts array datatype in zero-value HLAinteractionCount cases

Interpretation 1

The following text is added to the definition of all parameters of datatype HLAinteractionCounts in Table 17,

“In all MOM interactions that have a parameter of datatype HLAinteractionCounts, if an HLAinteractionCount element of the HLAinteractionCounts array would have a value (interaction class, 0), the HLAinteractionCount element shall not be present in the HLAinteractionCounts array. In other words, only HLAinteractionCount elements that have positive counts shall be present in an HLAinteractionCounts array. From this, it follows that if all interaction class counts have a zero value, then the HLAinteractionCounts array shall not have any elements in it; it shall be an empty HLAinteractionCounts array. This interpretation affects the following MOM interactions:

· HLAmanager.HLAfederate.HLAreport.HLAreportInteractionsSent

· HLAmanager.HLAfederate.HLAreport.HLAreportInteractionsReceived”

Rationale: This interpretation is analogous to the preceding interpretation for zero-value HLAobjectClassBasedCount cases. [New in Release 2]

Table 17: MOM HLAreportServiceInvocation: HLAreturnedArguments parameter

Interpretation 1
In table 17, the fourth parameter of the HLAmanager.HLAfederate.HLAreport.HLAreportServiceInvocation interaction reads,

 “HLAreturnedArgument”

It is changed to read (changes in boldface),

“HLAreturnedArguments”

Rationale: In order to be consistent with Table 7, the MOM parameter table, this parameter shall be named “HLAreturnedArguments”. [New in Release 2]

Table 17: MOM HLAreportMOMexception: HLAservice parameter

Interpretation 1
The definition of the HLAservice parameter reads,

“Name of the service interaction that had a problem or raised an exception.”

This definition is changed to read,

“In the case in which the HLAreportMOMexception interaction is sent by the RTI because a service interaction (an interaction that imitates a federate’s invocation of an HLA service) was sent and not all of the service’s pre-conditions are met, the value of this parameter shall be the name of the HLAinteractionRoot.HLA.Manager.HLAfederate.HLAservice interaction that was sent.

In the case in which the HLAreportMOMexception interaction is sent by the RTI because a MOM interaction without all of the necessary parameters was sent, the value of this parameter shall be the name of the class of the interaction that was sent.

The name of the interaction class provided shall always be fully qualified, as defined in the OMT, so as to avoid potential ambiguities.”

Rational: In the second case, the case in which the HLAreportMOMexception interaction is sent by the RTI because a MOM interaction without all of the necessary parameters was sent, there is no HLA service interaction involved. Providing the name of the class of interaction that was sent that caused the HLAreportMOMexception invocation at least provides information to the sending federate as to what the offending class of the sent interaction was. [New in Release 2]

10. Programming Language Mappings Interpretations
12.3.1.25 Initialize RTI

Interpretation 1

This entire clause is deleted.

Rationale: The Initialize RTI service has been deleted. [New in Release 2]

12.4.1.29 Initialize RTI

Interpretation 1

This entire clause is deleted.

Rationale: The Initialize RTI service has been deleted. [New in Release 2]
12.4.2.18 Transportation type
Interpretation 1

Transportation type constants in Java are HLA_RELIABLE and HLA_BEST_EFFORT. [New in Release 2]

12.4.2.22 Collection of attribute designator set and region designator set pairs
Interpretation 1

The beginning of the fourth sentence of this clause reads,

“The RTI implementer’s implementation of ParameterHandleValuePairSet shall adhere to the following:”

This phrase is changed to read (changes in boldface),

“The RTI implementer’s implementation of AttributeSetRegionSetPairList shall adhere to the following:”

Rationale: This change corrects a typographical error. [New in Release 2]

12.5.1.25 Initialize RTI

Interpretation 1

This entire clause is deleted.

Rationale: The Initialize RTI service has been deleted. [New in Release 2]

11. Application Programmer’s Interface Interpretations
Ada API:

Interpretation 1

The following two adjustments are made to the Ada API:

· Add the declaration of an access to Federate_Ambassador type:

Old text is:

type Federate_Ambassador is abstract tagged limited private;

 New text is:

type Federate_Ambassador is abstract tagged limited private;

type Ref_Federate_Ambassador is access all Federate_Ambassador'Class;

· Make the following change to Federate_Ambassador parameter of the Join_Federation_Execution service:

Old text is:

An_Intance_Of_Federate_Ambassador : in Federate_Ambassador’Class;

 New text is:

An_Intance_Of_Federate_Ambassador : in Ref_Federate_Ambassador;

Rationale: Without the above two changes, the implementation of the Join_Federation Execution service is not allowed to store an instance of Federate Ambassador type. The two changes above correct this fact by using an access to the instance. [New in Release 2]

Interpretation 2

The exception Synchronization_Point_Not_Announced of service 4.9, Synchronization Point Achieved is changed from

“Synchronization_Point_Not_Announced”

to (changes in boldface),

“Synchronization_Point_Label_Not_Announced”.

Rationale: This change will make the Ada exception name consistent with both the Java and C++ exception names, and with the exception name listed in the service description for the Synchronization Point Achieved service. [New in Release 2]
Interpretation 3

The Initialize_RTI function in the Ada 95 API is deleted.

Rationale: The Initialize RTI service has been deleted. [New in Release 2]

Interpretation 4

The Finalize_RTI procedure in the Ada 95 API is deleted.

Rationale: The Finalize RTI service has been deleted. [New in Release 2]

Interpretation 5

The Initialize_Never_Invoked, Initialize_Previously_Invoked, Bad_Initialization_Parameter, and Some_Federate_Is_Joined_To_An_Execution exceptions in the Ada 95 API are deleted.

Rationale: The Initialize RTI and Finalize RTI services have been deleted. [New in Release 2]

Java API:

Interpretation 1

Change the package name from

“hla.rti”

to

“hla.rti1516”.

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. Changing the package name in this way will help avoid naming conflicts between HLA 1.3 implementations, in which the package name is already hla.rti, and IEEE 1516.1 HLA implementations. [New in Release 2]
Interpretation 2
Make RangeBounds implement Serializable, and add ctor.

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. Making this item serializable and adding ctor makes saving a fedex easier. While this item could probably be saved and restored without making it serializable, it seems more sensible to use the standardized mechanism. [New in Release 2]

Interpretation 3

Make FederateHandleRestoreStatusPair implement Serializable, and add ctor.
Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. Making this item serializable and adding ctor makes saving a fedex easier. While this item could probably be saved and restored without making it serializable, it seems more sensible to use the standardized mechanism. [New in Release 2]

Interpretation 4

Make FederateHandleSaveStatusPair implement Serializable, and add ctor.
Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. Making this item serializable and adding ctor makes saving a fedex easier. While this item could probably be saved and restored without making it serializable, it seems more sensible to use the standardized mechanism. [New in Release 2]

Interpretation 5

Make TimeQueryReturn implement Serializable, and add ctor.

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. Making this item serializable and adding ctor makes saving a fedex easier. While this item could probably be saved and restored without making it serializable, it seems more sensible to use the standardized mechanism. [New in Release 2]

Interpretation 6

Make MessageRetractionReturn implement Serializable, and add ctor.

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. Making this item serializable and adding ctor makes saving a fedex easier. While this item could probably be saved and restored without making it serializable, it seems more sensible to use the standardized mechanism. [New in Release 2]

Interpretation 7

Make MobileFederateServices implement Serializable.

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. Making the above items serializable and adding ctor makes saving a fedex easier. While all of the above could probably be saved and restored without making them serializable, it seems more sensible to use the standardized mechanism. [New in Release 2]

Interpretation 8
An AttributeRegionAssociation class isadded to the Java API.

Rationale: According to the description of the AttributeSetRegionSetPairList class, the elements of an AttributeSetRegionSetPairList are said to be AttributeRegionAssociations. However, the AttributeRegionAssociation class seems to have been inadvertently omitted from the standard. [New in Release 2]

Interpretation 9
The parameter name on RTIambassador.getOrderName is changed from

“theHandle”

to

“theType”.

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. The type of the parameter is OrderType. This being so, it is confusing to have the parameter be called “theHandle”. It improves readability and makes the Java API easier to understand to have the parameter instead be more appropriately named “theType”. [New in Release 2]

Interpretation 10

The parameter name on the SynchronizationPointFailureReason ctor is changed from

“otherResignActionValue”

to

“reason”.

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. The type of the parameter is SynchronizationPointFailureReason. This being so, it is confusing to have the parameter be called “otherResignActionValue”. It improves readability and makes the Java API easier to understand to have the parameter instead be more appropriately named “reason”. [New in Release 2]

Interpretation 11
The spelling of the FederateAmbassador service

“objectNameReservationSucceded”

is changed to (changes in boldface)

“objectNameReservationSucceeded”.

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. Spelling words correctly improves readability and helps avoid mistakes and misunderstandings. [New in Release 2]

Interpretation 12
The spelling of the constant

“ServiceGroup.SUPPPORT_SERVICES”

is changed to

“ServiceGroup.SUPPORT_SERVICES”.

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. Spelling words correctly improves readability and helps avoid mistakes and misunderstandings. [New in Release 2]

Interpretation 13
"FederateNotExecutionMember" is added to the list of exceptions that can be thrown by all fourteen of the Java API-specific getXXXFactory() methods, such as getAttributeHandleFactory() and getRegionHandleSetFactory().

Rationale: Only federates that are joined to the federation execution shall have access to these factories. Unjoined federates would not need these factories, because the only methods that an unjoined federate can successfully call are Create Federation Execution and Join Federation Execution. Therefore, there is no need for an unjoined federate to get references to these factories, and it is reasonable for these factories to be able to throw the “FederateNotExecutionMember” exception. [New in Release 2]

Interpretation 14
The InitializeRTI () method is deleted from the Java API.

Rationale: The Initialize RTI service has been deleted. [New in Release 2]

Interpretation 15
The FinalizeRTI () method is deleted from the Java API.

Rationale: The Finalize RTI service has been deleted. [New in Release 2]

Interpretation 16
The InitializeNeverInvoked, InitializePreviouslyInvoked, BadInitializationParameter, and SomeFederateJoinedToAnExecution exceptions are deleted from the Java API.

Rationale: The Initialize RTI and Finalize RTI services have been deleted. [New in Release 2]
Interpretation 17

No RTI implementation shall call FederateAmbassador methods with null references, with the following exclusion:

· User-supplied tag arguments may be null.

If a joined federate supplies a null reference for any argument on any RTI ambassador call, the RTI shall generate the java.lang.NullPointerException, with the following exclusion:

· User-supplied tag arguments may be null.

Rationale: All non-optional service arguments are necessary and must be supplied, so it is not valid to provide a null reference for any of these arguments, except for the two stated exclusions. The user-supplied tag argument may be null if a federate provides it to the RTI as such. The MobileFederateServices argument in the Join Federation Execution service may be null in the case in which the federate does not wish to supply the LogicalTimeFactory and LogicalTimeIntervalFactory upon joining a federation execution. [New in Release 2]

C++ API

Drop the prefix RTI from filenames. The files should instead be placed in an RTI subdirectory. So, for example,

#include <RTI_1516.h>

is changed to:

#include <RTI/1516.h>

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. This interpretation is in keeping with common practice and is analogous to Java's package concept. [New in Release 2]

Drop the prefix RTI_ from all HLA classes and constants. Instead, all HLA classes should be in namespace RTI. So, for example,

RTI_FederateAmbassador

is changed to,

RTI::FederateAmbassador

Rationale: Support for namespaces by modern C++ compilers is commonplace and usage of namespaces is the accepted standard. This change also aligns the C++ API more closely with the Java API. [New in Release 2]

Drop the prefix RTI_ from all Standard C++ classes. Instead, all such classes should use the actual Standard C++ Library classes. So, for example,

RTI_set<RTI_wstring>

is changed to,

std::set<std::wstring>

 Also, eliminate use of the class RTI_bool/RTI_true/RTI_false. Standard C++ includes a built-in type bool, as well as true and false.

Rationale: The Standard C++ Library is supported on modern C++ compilers and commonly used by programmers. Usage of these types makes RTI implementations more efficient and familiar for users. [New in Release 2]

Add RTI_EXPORT to several class declarations.

Rationale: The omission would make it impossible to use the API on Windows platforms. [New in Release 2]

Remove the stray comment at end of the file EncodedLogicalTimeIntervalExample.h.

Rationale: The comment is incorrect. [New in Release 2]

Add a banner comment to the top of several files from which it is missing.

Rationale: Consistency. [New in Release 2]

Remove #include <memory> and add a forward declaration of std::auto_ptr<>for several files.

Rationale: Forward declaration can help reduce compile times. [New in Release 2]

Modify toString() to return a wstring instead of a const wstring. [New in Release 2]

Rationale: Since the toString() method is returning wstring by value, it is providing a copy to the invoker. Returning as a non-const allows the invoker to subsequently modify the wstring, which will not interfere with the functioning of the RTI. [New in Release 2]
RTI::Handle, defined in Handle.h and Handle.i, is updated as follows:

1. Cleaned up comments, renamed template arguments.

2. Added typedefs for template parameters.

3. Removed template parameter HandleFriendImplementationType.

4. Removed typedef for HandleFriendImplementationType.

5. Constructor Handle(HandleImplementationType impl) moved from private to public.

6. Constructor Handle(HandleImplementationType impl) made explicit.

7. Added default constructor.

8. Added template parameter HandleReturnType.

9. Added typedef for HandleReturnType.

10. Added method HandleReturnType getImplementation() const.

11. Added comments to mark implementation-specific details.

Rationale:

1. Allow class to be more readable.

2. Simplify usage of the class.

3. Standard C++ forbids template arguments to be declared as friends. This eliminates the need for the template parameter HandleFriendImplementationType and its use.

4. See 3.

5. See 3.

6. Constructor made explicit to avoid accidental implicit construction.

7. Default constructor added to allow handles to be more easily stored in Standard C++ Library containers. See also Interpretation 20.

8. New template parameter added to allow RTI implementer to return implementation by value or reference as desired from method getImplementation().

9. See 8.

10. Given 3., class would be unusable without this method.

11. Makes class more readable.

 [New in Release 2]

Include <Typedefs.h> instead of <SpecificTypedefs.h> in several files.

Rationale: This is necessary for the API to compile properly. [New in Release 2]

Change queryGALT(), queryLogicalTime(), queryLITS(), and queryLookahead() to return std::auto_ptr<LogicalTime>.

Rationale: Old return types are inconsistent and potentially problematic for RTI implementations. [New in Release 2]

Remove the stl default factory from the RTIambassadorFactory::createRTIambassador() argument.

Rationale: The argument is unnecessary. [New in Release 2]

Update RTI::Value, which is defined in Value.h and Value.i, as follows:

1. Clean up comments inside this class and rename template arguments.

2. Add typedefs for the template parameters.

3. Add getImplementation() method to retrieve the implementation.

4. Add a template parameter for the return type for the implementation.

5. Add comments to mark implementation-specific details.

6. Add default constructor.

Rationale:

1. Allows class to be more readable.

2. Simplifies usage of the class.

3. Class would be unusable without this method.

4. Making the return type a template parameter allows implementers to return implementation by value or reference as desired.

5. Makes class more readable.

6. Allows RTI::Value to be more easily stored in Standard C++ Library containers.

[New in Release 2]
Rearrange Typedefs.h and SpecificTypedefs.h so that the contents of Typedefs.h are completely implementation-independant and the contents of SpecificTypedefs.h are completely implementation-specific.

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. As currently written, these files make it difficult to determine what is implementation-specific and what is required by the specification. The interpretation is included to increase clarity. It is designed to make the intent of the specified files easier to understand. [New in Release 2]

Forward declarations of the RTI::exceptions in the ambassador files are replaced with #include <RTI/exception.h>.

Rationale: This is required for standard C++ compliance. [New in Release 2]

Change the declaration of all methods within RTIambassador that return a constant reference (const &) to return the actual C++ object instead. For example,

virtual ObjectInstanceHandle const & registerObjectInstance(

ObjectClassHandle const & theClass)

throw (ObjectClassNotDefined,

ObjectClassNotPublished,

ObjectInstanceNameNotReserved,

ObjectInstanceNameInUse,

FederateNotExecutionMember,

SaveInProgress,

RestoreInProgress,

RTIinternalError) = 0;

is changed to,

virtual ObjectInstanceHandle registerObjectInstance(ObjectClassHandle const & theClass)

throw (ObjectClassNotDefined,

ObjectClassNotPublished,

ObjectInstanceNameNotReserved,

ObjectInstanceNameInUse,

FederateNotExecutionMember,

SaveInProgress,

RestoreInProgress,

RTIinternalError) = 0;

The registerObjectInstance function now returns the actual ObjectInstanceHandle C++ object instead of a reference to the C++ object, ObjectClassHandle const &, in the RTI.

(As modified by interpretation 2 for the C++ API, the RTI_ prefix has been dropped from all HLA classes and constants in the example above.)

Rationale: Although the standard is clear and implementable on this point, it has been determined to be in the DoD’s best interest to include this interpretation. This new declaration causes the actual C++ object to be returned to the federate instead of a reference to the C++ object. This releases the RTI implementation from having to keep the referenced handle object in memory after the invocation returns, which may be problematic for some implementations. [New in Release 2]

Change the parameter securedAttributes in method confirmDivestiture from std::auto_ptr< AttributeHandleSet > to AttributeHandleSet const & and also rename parameter from

“securedAttributes”

to

“confirmedAttributes”.

Rationale: The new parameter name is more understandable. Using const reference makes the method consistent with other ownership management routines in the RTIambassador. [New in Release 2]

requestFederationRestoreFailed is changed to take a “label” argument, so it looks like this:

“requestFederationRestoreFailed(RTI_wstring const & label)”

Rationale: The service description for the Confirm Federation Restoration Request specifies that this service has a federation save label argument, and this label argument is present for the requestFederationRestoreFailed service in the Ada and Java APIs. [New in Release 2]

setRangeBounds(), which now throws

“InvalidRangeBounds”

is changed to throw

“InvalidRangeBound”.

Rationale: This makes the exception name consistent with the text in clause 10.32.5 of the Federate Interface Specification, and with the exceptions thrown by setRangeBounds() in the Java and Ada APIs. [New in Release 2]

normalizeFederateHandle(), which now throws

“RTI_FederateHandle”

is changed to throw

“RTI_InvalidFederateHandle”.

Rationale: This makes the exception name consistent with the text in clause 10.33.5 of the Federate Interface Specification, and with the exceptions thrown by normalizeFederateHandle () in the Java and Ada APIs. [New in Release 2]

On page 426 of the 1516.1-2000 standard there is a C++ comment that reads,

“File: RTI_RTIambassador.h”

This comment is changed to read,

“File: RTI/RTIambassadorFactory.h”

Rationale: The comment is incorrect. It is supposed to refer to the file it is in, which is RTI/RTIambassadorFactory.h. Note that the change from underscore (_) to slash (/) is an effect of interpretation 3. [New in Release 2]

The RTI_EXCEPTION macro in <exception.h> is reformatted.

Rationale: The macro was unreadable. [New in Release 2]

The constructor for FederateAmbassador is made protected.

Rationale: This class is abstract and cannot be directly instantiated. This conforms to standard practice for abstract classes. [New in Release 2]

The constructor for RTI::RTIambassador is made protected.

Rationale: This class is abstract and cannot be directly instantiated. This conforms to standard practice for abstract classes. [New in Release 2]

The parameter for federateAmbassador in method joinFederationExecution, which is now,

“std::auto_ptr< FederateAmbassador >”

is changed to

“FederateAmbassador &”.

Rationale: The federate should remain in control of the lifetime of the object. The Specification also does not dictate when the object would be deleted and could be different for different RTI implementations. Exceptions may also make object allocation and joining tedious. [New in Release 2]
The parameter for logicalTimeFactory in method joinFederationExecution, which is now,
“std::auto_ptr< LogicalTimeFactory >”

is changed to
“LogicalTimeFactory &”.

Rationale: The federate should remain in control of the lifetime of the object. The Specification also does not dictate when the object would be deleted and could be different for different RTI implementations. Exceptions may also make object allocation and joining tedious. [New in Release 2]

The parameter for logicalTimeIntervalFactory in method joinFederationExecution, which is now,
“std::auto_ptr< LogicalTimeIntervalFactory >”

is changed to

“LogicalTimeIntervalFactory &”.

Rationale: The federate should remain in control of the lifetime of the object. The Specification also does not dictate when the object would be deleted and could be different for different RTI implementations. Exceptions may also make object allocation and joining tedious. [New in Release 2]

The return type of createRegion, which is now

std::auto_ptr< RegionHandle >

is changed to

RegionHandle.

Rationale: std::auto_ptr is complex and easily misused when used in collections. This change also avoids object ownership problems. [New in Release 2]

The parameter theRegion in method deleteRegion, which is now

std::auto_ptr< RegionHandle >

is changed to

RegionHandle.

Rationale: Region handles should be passed to and from the RTI by value. This avoids object ownership problems. [New in Release 2]

ALL APIs:

Interpretation 1

The Confirm Divestiture service shall throw the following exception: NoAcquisitionPending. This exception shall be added to each API (in the file RTI_exception.h for C++, package <some_supplier>_rti.ads for Ada, and RTIexception.java for Java).

Rationale: This exception is required to be included in all APIs so that they can implement interpretation 1 of service 7.6: Confirm Divestiture. [New in Release 2]
Interpretation 2

The Normalize Service Group service shall throw the following exception: InvalidServiceGroup in the C++ and Java APIs and Invalid_Service_Group in the Ada API.

Rationale: This makes the exceptions thrown in the APIs for normalizeServiceGroup() consistent with the text in clause 10.34.5 of the Federate Interface Specification. [New in Release 2]
Interpretation 3

The SaveNotInProgress exception is deleted from all APIs.

Rationale: This exception is no longer needed because it has been deleted as an exception of the Query Federation Save Status service by Interpretation 1 of Service 4.16. [New in Release 2]

Interpretation 4

The RestoreNotInProgress exception is deleted from all APIs.

Rationale: This exception is no longer needed because it has been deleted as an exception of the Query Federation Restore Status service by Interpretation 1 of Service 4.24. [New in Release 2]
12. Interpretations for IEEE 1516.2-2000—M&S HLA OMT Specification
4.4.2: Table Format

Interpretation 1

In the part of this clause that discusses the “Update type” column of the Attribute table, the text that defines “Static” reads,

"Static: The value of the attribute is static; the federate updates it initially and when requested."

This text is changed to read (changes in boldface),

"Static: The value of the attribute is static; the owner of the attribute (federate or RTI) updates it upon registration and when requested."

The text that defines "Periodic" reads,

"Periodic: The federate updates the attribute at regular time intervals."

This text is changed to read (changes in boldface),

"Periodic: The owner of the attribute (federate or RTI) updates the attribute at regular time intervals."

The text that defines "Conditional" reads,

"Conditional: The federate updates the attribute when unique conditions dictate."

This text is changed to read (changes in boldface),

"Conditional: The owner of the attribute (federate or RTI) updates the attribute when unique conditions dictate."

Rationale: Federates are not the only entities in federations that can own and therefore update instance attributes. The RTI also owns the Management Object Model attributes, and the update type definitions of static, periodic and conditional need to be as applicable to instance attributes owned by the MOM as they are to instance attributes owned by a federate. [New in Release 2]

OMT DIF SOM and FOM Examples: MOM spelling inconsistencies

Interpretation 1

The terms HLAsyncPoints, HLAsyncPointName, HLAsyncPointStatus, HLAsyncPointList, and HLAsyncPointFederate, while spelled consistently in IEEE 1516.1-2000 (The Federate Interface Specification), are not spelled the same in IEEE 1516.2-2000 (The Object Model Template). In the OMT, these terms are spelled “synch” instead of “sync”. The spelling that shall be used is the spelling in IEEE 1516.1-2000 (“sync”). [New in Release 2]
13. Interpretations for IEEE 1516—M&S HLA Framework and Rules
There are currently no interpretations for IEEE 1516-2000 standard.

APPENDIX A: Tutorial and Explanatory text

This appendix includes tutorial material that explains some aspects of the specification that, while clear in the standard, may be misunderstood.

Service 4.6: Register Federation Synchronization Point

Clarification 1

Question: Pre-conditions c) and d) of this service do not have corresponding exceptions. That is, if the Register Federation Synchronization Point service is invoked with a supplied set of joined federate designators and one or more of the designated federates is not joined to the federation execution, no exception shall be thrown. Similarly, if the Register Federation Synchronization Point service is invoked with a synchronization point label that is in use, no exception shall be thrown. Is this correct?

Answer: It may not be possible for a federate to determine whether a given federate is a federation execution member or whether a synchronization point label is in use. Therefore, a federate cannot be required to include only federates that are federation execution members in the optional set of joined federate designators that it supplies as an argument, nor can a federate be required to use only a synchronization point label that is not in use. If a federate does invoke the Register Federation Synchronization Point service with a set of federate designators that includes a federate that is not a federation execution member or with a synchronization point label that is already in use, the federate shall receive a Confirm Synchronization Point Registration † service callback with a Registration-success indicator of failure and an appropriate failure reason. A federate shall not receive a Confirm Synchronization Point Registration † service callback with a Registration-success indicator of success if the synchronization point label that the federate had supplied as argument to the corresponding Register Federation Synchronization Point service is already in use or if any of the federates in the set of joined federates supplied as argument to the Register Federation Synchronization Point service is not a federation execution member. [New in Release 2]
Service 6.10: Delete Object Instance

Clarification 1

It should be noted in conjunction with this service that the standard is silent regarding what will happen in the case in which a federate attempts to take ownership of an instance attribute of an object instance for which another federate has already scheduled a timed deletion. That is, if a federate schedules the deletion of an object instance for a time in the future, that object instance may still be discovered by other federates, and updates to instance attributes of that object instance may still be received by other federates, until their logical times are greater than or equal to the specified time of the deletion. If those other federates are allowed to take ownership of any of the instance attributes owned by the federate that scheduled the delete, then it would be possible for anomalous events to occur within the federation execution, such as a federate that owns the HLAprivilegeToDelete instance attribute of an object instance receiving a Remove Object Instance † callback for that object instance. The standard does not specify the RTI's behavior in such circumstances. [New in Release 2]

Service 8.6: Time Constrained Enabled †
Clarification 1

This service description says that (if the joined federate is not time-regulating) "the RTI shall provide the joined federate with the smallest possible logical time that is greater than or equal to the logical time of the joined federate and for which all other constraints necessary to ensure TSO message delivery are satisfied." This description is overly complicated.

When a federate invokes the Enable Time Constrained service, there is no case in which the federate's logical time needs to be advanced. The value of the current logical time argument of the Time Constrained Enabled † service will always be the current logical time of the federate when it invoked the Enable Time Constrained service.

If the joined federate's current logical time is less than or equal to its GALT when it invokes the Enable Time Constrained service, then the Time Constrained Enabled † service may be invoked immediately at the joined federate; if the joined federate's current logical time is greater than its GALT when it invokes the Enable Time Constrained service, then the Time Constrained Enabled † service cannot be invoked until the joined federate's GALT advances beyond its logical time. In either case, however, when the Time Constrained Enabled † service is invoked at the joined federate, the value of the current logical time argument of the Time Constrained Enabled † service will be the value of the federate's current logical time when the federate invoked the Enable Time Constrained service. [New in Release 2]

Service 8.12: Flush Queue Request †
Clarification 1

The Flush Queue Request service introductory text says that

The RTI shall advance the joined federate's logical time to the smallest of the following:

· the specified logical time

· the joined federate's GALT value

· the smallest time stamp of all TSO messages delivered by the RTI in response to this invocation of the Flush Queue Request service.

The third item in the list above is a change from the 1.3 specification to the 1516 specification and the purpose of adding it is to allow federates to generate new events with “small” time stamps in response to events it received as a result of the Flush Queue Request. For example, consider the following scenario:

A federate makes a Flush Queue Request service invocation to time 100.

The federate receives a message with time stamp 95

The federate gets a grant to time T.

Without the third condition above, the federate could get a grant up to time 100 (i.e., T=100). However, the federate may want to send a new event, e.g., Update Attribute Values, in response to the event with time stamp 95. This new event might have, for example, a time stamp of 96. This is a perfectly reasonable thing to do, but would cause an exception if the federate had already been advanced to time 100.

To address this, the third condition will ensure that the grant will only be to time 95 (or less). [New in Release 2]

C++ API

Clarification 1

There are four exceptions declared in the file RTI exception.h that are not used in the C++ API. They are:

· exception ArrayIndexOutOfBounds

· exception UpperBoundOutOfRange

· exception ValueCountExceeded

· exception ValueLengthExceeded

[New in Release 2]

Service 8.22 Request Retraction

Clarification 1

Federates should be aware that, according to this service description, they may receive a Request Retraction † callback for a message that has not been delivered to them. In this case, federates should ignore the Request Retraction † callback. [New in Release 2]

Section 11.1: MOM Overview

Clarification 1

The third paragraph shall be deleted because it repeats part of the second paragraph word-for-word. [New in Release 2]

C++ API: Bug in std::set and std::map in Microsoft Visual C++ 6.0

There is a bug in the include files provided with Microsoft Visual C++ 6.0. This bug makes it impossible to create a std::set or std::map in the application and then use it in the dll, and vice versa.

There is a patch available from DinkumWare (http://www.dinkumware.com/vc_fixes.html, fix to <xtree>), which made the include files for Microsoft.

IEEE 1516.2 (OMT) Clauses 4.12.9 and 4.12.9.4 HLAvariableArray

Interpretation 1

The number of elements component of an array of HLAvariableArray datatype is considered in determining the octet boundary value of the array, which may be used to determine the padding after an array that is within another constructed datatype (e.g., an outer array).

As an example, consider a variable-length array of variable-length arrays. In particular, consider a variable-length array of two Unicode character strings, the first with three elements and the second with two elements. As discussed in IEEE 1516.2, the entire array of arrays is referred to as the outer array, and each element of the outer array is referred to as an inner array. Padding after the number of elements component of the outer array is calculated as follows:

(4 + P) mod V = 0

(4 + P) mod 4 = 0

P = 0

V is the octet boundary value of the element type, which in this case is the inner variable-length arrays. The octet boundary value of each inner array is the maximum octet boundary value of all components of the array. In this case, the octet boundary value of each inner array is 4 because the octet boundary value of the number of elements component of the variable-length array (4) is greater than the octet boundary value of the elements of the array (2).

The padding after the first element of the outer array is calculated as follows:

(Size1 + P1) mod V = 0

(10 + P1) mod 4 = 0

 P1 = 2

Note that since the predefined array datatype “HLAunicodeString” uses the HLAvariableArray encoding, the size is determined by allocating 4 bytes for the number of elements component, and three 2-byte elements of type “HLAunicodeChar”. Also note that no padding is added after the second element of the outer array.

[image: image2.png]
Rationale: This section defines the encoding for arrays with variable cardinality. It is important to note when reading this section that the term “element” refers only to each of the list of items in the array, but not to the first field of the HLAvariableArray datatype, which is the number of elements component encoded as an HLAinteger32BE. This first field of the array, the number of elements component, is not an “element” of the array. It is, however, a “component” of the array. All elements of the array are components of the array, but not all components of the array are elements of the array. Specifically, the number of elements component of the array is not an element of the array and it does not enter into the formula for determining the number of padding bytes that shall be added

· after the number of elements component of an HLAvariableArray to ensure that the first element in the array is properly aligned, or

· after each element of a fixed or variable array.

The number of elements component, however, is considered in determining the padding after a variable array that is an element in an array of variable arrays. [New in Release 2]

� EMBED PBrush ���

PAGE
4

[image: image3.wmf]0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

HLAinteger32BE

HLAunicodeString

0

0

16 17 18 19 20 21 22 23

HLAunicodeString

Byte

Byte

0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

HLAinteger32BE

HLAunicodeString

0

0

16 17 18 19 20 21 22 23

HLAunicodeString

Byte

Byte

_1112510745

