BREAKOUT GROUP THREE DISCUSSION ITEMS

Notional Composable Modeling and Simulation Languages, Databases, and Data

1.  What language issues does component technology create?

The assumption made regarding this question is that it refers to programming languages, and not design, architectural, semantic, or formal specification languages.

- What language should we use?  C++, Java, or is a language mandated?

- Mobile code issues:  Can we pass mobile code using the language?  Relatively easy to do in Java, but more difficult to do in languages like C++.

- Programming support of interfaces seems essential to any language supporting components.  Needs to support the entire interface lifecycle:  specification, implementation, modification.

- Must facilitate formal specification implementation.

- Must be able to enforce business rules.

- Anything can be done in a language, but how easily?  There must be some figure of merit that describes this. 

Interface lifecycle support (requirements, design, implementation, testing, configuration management, meta-data).  Composability implies support for a range of computer languages.  Enforcement of assertions, static/dynamic business rules for the interface.  No compiler specific language extensions in the interface.

Marker Design Pattern very useful for understanding components.

Allows some additional flexibility in selection of computer language because of the rigorous separation of components by the interface.

2.  What language issues does component technology ameliorate or solve?

Consensus opinion is that component technology tends to strain language abilities, not enhance them.  Some areas to consider:

- May allow one language to cover the shortcomings of another language.  Example:  A component could be written in C or C++ to accomplish mathematical computation that might be “suspect” in Java.  Thus, a shortcoming of Java could alleviated by component approaches.

- This approach may get rid of language “religious wars” since we can use a variety of languages to solve a problem.

- It may be that this isn’t a programming language issue, it appears to apply more to architectural-level description languages.

UML is defacto standard for capturing software requirements and static design.  UML is well integrated, mature on visual presentation.  UML has important ambiguities in the relationships in the differing views.  These ambiguities are worked around by manual transformation and informal communications in current use.  The composable components approach can founder on these ambiguities.

Languages are needed to capture architecture and domain semantics at each level of the architecture.

3.  Is the Unified Modeling Language (UML) the standard of choice?

Consensus opinion is that it is not a complete solution as a standard.  Issues include:

- UML is the de facto standard for software design.  However, languages are required at several levels:  programming, design, architecture, and semantic meaning.  UML is not a complete solution to the entire problem.

- UML is mature in its visual representations, but is very immature and poorly defined in terms of the semantics of relationships between views (class, interaction, sequence, etc.).  Question to be asked:  What is the semantic relationship between the diagrams?

- Works well as a standard for communicating designs among a group.  Doesn’t work well at abstraction levels above design.

- Does the monopoly of UML inhibit other tools/languages from gaining acceptance?

- UML has numerous limitations/ambiguities.  These limitations may not affect many applications developed under it, but component-based simulation tends to magnify these deficiencies.

- Other issues:


-- Poor ability to aggregate low-level software designs into components, or to aggregate components into higher-level components.  


-- UML tends to focus on objects, but components are typically composed of numerous objects, or may have been developed using structured programming approaches.


-- Temporal description aspects of UML are lacking

- Question:  Should we create a new language or set of languages?  Several areas seem to require language description support (semantic meaning, architecture).  However UML seems to have effectively “killed off” those proposed in research literature.  Languages that are proprietary in nature should not be used.

UML is defacto standard for capturing software requirements and static design.  UML is well integrated, mature on visual presentation.  UML has important ambiguities in the relationships in the differing views.  These ambiguities are worked about by manual transformation and informal communications in current use.  The composable components approach can founder on these ambiguities.

Languages are needed to capture architecture and domain semantics at each level of the architecture.

4.  Are there data and/or database issues that must be considered when reusing components?

- The impact that structured data has on applications can be compared to the impact structured programming had on application development.

- Structured data must carry its own description (think “nutritional food label”) with it.  It must also carry information that establishes the pedigree (source authority) of the data.

- Components tend to be self-contained, bundling both code and data.  Both may need to be stored together.

-  If code (algorithms) are stored, then problems may arise if the algorithm is changed, but not the data associated with it.  Similar problems may occur if the data representation is changed, but not the corresponding code.  For example, changing data representation from a Java Vector to a Java List would have a profound impact.

- If changes are made, should effects of that change cascade in a manner similar to that of foreign key handling in relational database systems?

- The domain in which data is being stored is very important.

- Publishing data in non-public (raw) formats limits its usefulness in the composable environment, and whenever possible XML should be used.  The fidelity of the data must be known.  The resolution and scope of the data must be defined.

- XML descriptions do not need to be sent with every packet of data.  Pick the appropriate time to send descriptions.  For high-volume transactions, send the description of the data to follow, then send the data en masse. 

data and data specification are packaged in the data transfer.  Nutritional food label comes with the packet.  Storage, Selection, Retrieval.  Major issue at lots of levels:  parameter + algorithm must match both syntactically and semantically to be valid -- composability means the architecture/implementation needs to understand how to adjust; cascading delete issues when data is added/removed; separation of content and service gets murky when one moves from flat file to link list to b-tree to rdms to oodbms.

Publish data along with associated code an access data if data is not in an excepted, published format.

Data scope, resolution, fidelity must be defined and is highly context dependent.

5.  Does the use of components-based software engineering provide advantages for use with legacy systems?

Bottom-line:  Yes.

- Being able to put component wrappers around legacy apps gives them new life and value to the M&S community.

- Large simulations, due to their monolithic nature, may not be suitable candidates for component wrappers.

- Single-purpose simulations, such as some of the engineering models, may be the best candidates for component wrappers.  Allowing them to become components means they can be used as plug-ins for a variety of other simulations.  This is already done on an ad hoc basis for many simulation efforts.

- There is a strong need to find/define best practices in the community.  Developers working with HLA interoperability projects may have experience that can be passed on.

- HLA doesn’t cover the entire problem area, but there’s experience there that can be tapped.

- HLA projects tend to be very domain-specific

- 

George Heineman and William Councill, "Component-Based Software Engineering, Putting the Pieces Together", Addison-Wesley

Five Key Factors

1) The schema-for-the-schema (the higher level abstraction imposed on all domains to facilitate interaction and interoperability between domains)

2) The taxonomies/ontologies used to organize domain relationships

3) The lexicon for naming key domain concepts (entities, processes,

relationships, attributes, interactions, etc)

4) The enumerations for uniquely identifying the "eachs" in the domain.

5) The tools and utilities employed.

